Abstract:
The production of solid lubricant agglomerates by combining solid lubricant powder, an inorganic binder, other fillers if optionally desired, and a liquid to form a mixture, and driving off the liquid to form dry agglomerates which are subsequently classified by size or milled and classified by size to yield agglomerates of a desired size range. These agglomerates are then treated to stabilize the binder, thereby strengthening the binder and rendering it nondispersible in the liquid. The treated agglomerates are then blended or clad with a metal, metal alloy or a metallic composition, to produce a composition suitable for thermal spray applications.
Abstract:
A process for manufacturing a lubricant composition comprises combining a superabsorbent polymer with a material for decreasing friction between surfaces that frictionally engage one another, by polymerizing monomers of the superabsorbent polymer with the material for decreasing friction, or polymerizing the monomers for forming the superabsorbent polymer with the material for decreasing friction and a binder, where the binder is selected from thermoplastic resins or curable resins. The superabsorbent polymer may comprise a polymer of acrylic acid, an acrylic ester, acrylonitrile or acrylamide, including co-polymers thereof or starch graft co-polymers thereof or mixtures thereof. The material for decreasing friction comprises a petroleum lubricant, synthetic lubricant, grease, solid lubricant or metal working lubricant optionally containing a lubricant additive, or mixtures thereof. The process encompasses conducting the polymerization and coating the lubricant composition on a surface such as a wire or cable. The various processes also yield products produced by the process.
Abstract:
The invention provides a method for the inline manufacturing of metal wire rod for use in plastic working with excellent lubricity, thereby providing energy, space and time savings, wherein the surface of metal wire rod cleaned by shot blasting, sand blasting, bending, anodic pickling, and cathodic pickling or the like for 20 seconds or less; contacted with an aqueous, lubricating-coating formation processing liquid containing inorganic salt and at least one kind of lubricant for 5 seconds or less, and then dried immediately to form a lubricant film with a coating weight of 0.5-20 g/m2 on the surface of said metal rod, all in a continuous inline system.
Abstract translation:本发明提供了一种用于塑料加工的金属线材的在线制造方法,具有优异的润滑性,从而提供能量,空间和时间节省,其中金属线材的表面通过喷丸,喷砂,弯曲,阳极酸洗 ,阴极酸洗等20秒以下; 与含有无机盐和至少一种润滑剂的水性润滑涂层形成处理液接触5秒以下,然后立即干燥,形成表面涂布量为0.5〜20g / m 2的润滑剂膜 的金属棒,全部在一个连续的在线系统。
Abstract:
A process is disclosed for manufacturing a lubricant composition comprising combining a superabsorbent polymer with a material for decreasing friction between moving surfaces. The superabsorbent polymer absorbs from about 25 to greater than 100 times its weight in water and may comprise a polymer of acrylic acid, an acrylic ester, acrylonitrile or acrylamide, including co-polymers thereof or starch graft co-polymers thereof or mixtures thereof. A product produced by the process includes the material for decreasing friction comprising a petroleum lubricant containing an additive, water containing an additive, synthetic lubricant, grease, solid lubricant or metal working lubricant, wherein the synthetic lubricant, grease, solid lubricant or metal working lubricant optionally contain an additive. A process comprising controlling the delivery of a lubricant to at least one of two moving surfaces in order to decrease friction between said moving surfaces, is also disclosed. This process includes applying the lubricant composition to at least one of the surfaces. The lubricant composition in this instance comprises a superabsorbent polymer combined with a material for decreasing friction between moving surfaces, wherein the material for decreasing friction comprises a petroleum lubricant, water, synthetic lubricant, grease, solid lubricant or metal working lubricant, and optionally an additive.
Abstract:
The present invention provides a new composite material comprising a porous matrix made of metal, metal alloy or semiconducting material and hollow fullerene-like nanoparticles of a metal chalcogenide compound or mixture of such compounds. The composite material is characterized by having a porosity between about 10% and about 40%. The amount of the hallow nanoparticles in the composite material is 1-20 wt. %.
Abstract:
Dry film lubricant coatings are provided by using a silicone resin binder, either as an aqueous emulsion or in a solvent-based system, to fix an alkaline earth metal fluoride to a substrate. The compositions used to apply the coatings may also include relatively minor amounts of xylene, ammonium benzoate, a wetting agent, and/or a porosity-inducing agent—although none of those additives remains in the cured coating. Multi-layer dry film lubricant coatings are also disclosed, with the multi-layer coating having a basecoat layer as described above, and a topcoat layer made of a layer-lattice solid such as graphite or molybdenum disulfide, and a silicone resin, aluminum phosphate or an alkali metal silicate binder.
Abstract:
Dry film lubricant coatings are provided by using a silicone resin binder, either as an aqueous emulsion or in a solvent-based system, to fix an alkaline earth metal fluoride to a substrate. The compositions used to apply the coatings may also include relatively minor amounts of xylene, ammonium benzoate, a wetting agent, and/or a porosity-inducing agentnullalthough none of those additives remains in the cured coating. Multi-layer dry film lubricant coatings are also disclosed, with the multi-layer coating having a basecoat layer as described above, and a topcoat layer made of a layer-lattice solid such as graphite or molybdenum disulfide, and a silicone resin, aluminum phosphate or an alkali metal silicate binder.
Abstract:
A solid lubricant and composition useful for lubricating the flanges of locomotive wheels, railcar wheels, rail track and in applications where it is desirable to reduce friction when metal contacts metal. The solid lubricant having from about twenty-five percent to about seventy percent by volume of a polymeric carrier, about five to seventy-five percent by volume of organic and inorganic extreme pressure additives, about zero to twenty percent by volume synthetic extreme pressure anti-wear liquid oil, and about zero to one percent by volume optical brightener.
Abstract:
A powdery mold-releasing lubricant according to the present invention uses a powdery mixture of a powdery organic material, which is evaporated or decomposed by heating to generate a gas, and a powdery inorganic material. A gas-solid mixed layer formed with the gas generated from the powdery mixture and the powdery inorganic material is used as a heat-insulating boundary layer. The powdery mold-releasing lubricant is inexpensive and has a superior mold lubricity.
Abstract:
A metal material subjected to a treatment for seizure prevention is provided. The metal material includes a metal base material and a film formed thereon, the film being composed of a carbodiimide group-containing resin obtained from an aromatic polyisocyanate or of a mixture of said carbodiimide group-containing resin and a lubricant. A method for producing a metal material subjected to a treatment for seizure prevention is also provided. The method includes coating, on a metal base material, a carbodiimide group-containing resin obtained from an aromatic polyisocyanate or a mixture of said carbodiimide group-containing resin and a lubricant, and then subjecting the coated metal base material to a heat treatment at a temperature of 120° C. or higher.