Abstract:
include using an application on a mobile device to establish first wireless communications with a first smart-home device that was previously paired with the user account. The method may also include transmitting, to the first smart-home device and using the first wireless protocol, a transmission that instructs the first smart-home device to establish second wireless communications with a second smart-home device, where the second wireless communications use a second wireless protocol. The method may additionally include transmitting network credentials to the first smart-home device using the first wireless protocol, where the credentials are then sent from the first smart-home device to the second smart-home device using the second wireless protocol, such that the second smart-home device can pair with the user account using the first wireless protocol.
Abstract:
A deivce may include a user interface configured to display at least a first graphical display and a second graphical display, a first proximity sensor having a first responsive range, and a second proximity sensor having a second responsive range. A processing system may be programmed to control the user interface by receiving an indication of a user presence within the second responsive range from the second proximity sensor while not receiving an indication of a user presence within the first responsive range from the first proximity sensor and causing the user interface to display the second graphical display. The processing system may also be programmed to receive an indication of a user presence within the first responsive range from the first proximity sensor and an indication of the user presence within the second responsive range from the second proximity sensor and cause the user interface to transition from the second graphical display to the first graphical display.
Abstract:
Systems and methods are provided for efficiently controlling energy-consuming systems, such as heating, ventilation, or air conditioning (HVAC) systems. For example, an electronic device used to control an HVAC system may encourage a user to select energy-efficient temperature setpoints. Based on the selected temperature setpoints, the electronic device may generate or modify a schedule of temperature setpoints to control the HVAC system.
Abstract:
An electronic thermostat is described that includes a head unit, a rotatable ring, a backplate, an electronic display that is viewable by a user in front of the thermostat, a printed circuit board, and a daughter circuit. The daughter circuit is coupled to the printed circuit board, and senses motion of the rotatable ring and includes a first temperature sensor. A second temperature sensor separated from the first temperature sensor, are both used to calculate ambient temperature. The first temperature sensor is positioned at least partially within a cavity formed between a front surface of the head unit and the printed circuit board.
Abstract:
Systems and methods are described for interactively and graphically displaying performance information to a user of an HVAC system controlled by a self-programming network-connected thermostat. The information is made on a remote display device such as a smartphone, tablet computer or other computer, and includes a graphical daily summary each of several days. In response to a user selection of a day, detailed performance information is graphically displayed that can include an indication of HVAC activity on a timeline, the number of hours of HVAC activity, as well as one or more symbols on a timeline indicating setpoint changes, and when a setpoint was changed due to non-occupancy.
Abstract:
Systems and methods for providing spoken messages that reflect event status of one or more hazard detection systems within a smart-home environment are described herein. The messages can inform occupants in concise manner that does not overload cognitive recognition of those occupants. For example, the messages may be prioritized to limit the amount of information that is spoken and intelligently condense information in as concise a manner as possible. This may be accomplished by using one or more speaking paradigms to compile audible messages to be played back through a speaker of the hazard detection system.
Abstract:
Hazard detector for providing a pre-alarm of a developing hazardous condition can include a detection module that detects a hazard level of smoke or carbon monoxide, a light source that generates light, a speaker that generates an audible sound, a horn that generates an audible alarm that a higher volume than the speaker, and a processing module. The processing module can receive the detected hazard level and compare it with the pre-alarm threshold and the emergency threshold. The processing module can determine that the hazard level is greater than the pre-alarm threshold and less than the emergency threshold and cause an audible pre-alarm speech to be generated via the speaker that warns of the developing hazardous condition.
Abstract:
Embodiments provided herein relate to implementing a household policy within a household environment. In one example, a method includes: receiving, at a processor, the household policy; interpreting the household policy to extract one or more conditional events associated with the household policy; monitoring, via at least one sensing smart device in the household environment, for satisfaction of the one or more conditional events; and when the one or more events is satisfied, implement one or more controls on at least one conditionally controlled smart device in the household environment, the at least one smart device affecting the household environment.
Abstract:
A user-friendly programmable thermostat is described that includes receiving an immediate-control input to change set point temperature, controlling temperature according to the set point temperature for a predetermined time interval, and then automatically resetting the set point temperature upon the ending of the predetermined time interval such that the user is urged to make further immediate-control inputs. A schedule for the programmable thermostat is automatically generated based on the immediate-control inputs. Methods are also described for receiving user input relating to the user's preference regarding automatically generating a schedule, and determining whether or not to automatically adopt an automatically generated schedule based on the received user input.
Abstract:
A thermostat may include a user interface configured to display at least a first graphical display and a second graphical display, a first proximity sensor having a first responsive range, and a second proximity sensor having a second responsive range. A processing system may be programmed to control the user interface by receiving an indication of a user presence within the second responsive range from the second proximity sensor while not receiving an indication of a user presence within the first responsive range from the first proximity sensor and causing the user interface to display the second graphical display. The processing system may also be programmed to receive an indication of a user presence within the first responsive range from the first proximity sensor and an indication of the user presence within the second responsive range from the second proximity sensor and cause the user interface to transition from the second graphical display to the first graphical display.