Abstract:
A method of making planar-type bottom electrode for semiconductor device is disclosed. A sacrificial layer structure is formed on a substrate. Multiple first trenches are defined in the sacrificial layer structure, wherein those first trenches are arranged in a first direction. The first trenches are filled with insulating material to form an insulating layer in each first trench. Multiple second trenches are defined in the sacrificial layer structure between the insulating layers, and are arranged in a second direction such that the second trenches intersect the first trenches. The second trenches are filled with bottom electrode material to form a bottom electrode layer in each second trench. The insulating layers separate respectively the bottom electrode layers apart from each other. Lastly, removing the sacrificial layer structure defines a receiving space by two adjacent insulating layers and two adjacent bottom electrode layers.
Abstract:
A method for improving atomic layer deposition (ALD) performance and an apparatus thereof are disclosed. The apparatus alternates the process temperature of the different ALD steps rapidly, and the process temperature of each step is determined in accordance with the specific precursor and the substrate surface used. In case a higher process temperature is needed, a plurality of heating units of the apparatus increases and keeps the temperature of the deposited substrate to complete surface reaction. When the lower process temperature is needful for the next ALD step, the heating units are turned off to reduce the temperature of the deposited substrate and a gas flow puffed to the heater and the deposited substrate to assist in temperature cooling.
Abstract:
An integrated circuit device comprises a substrate, a stack structure including circuit structure having conductive lines positioned on the substrate, a reinforcement structure including at least one supporting member positioned on the substrate and a roof covering the circuit structure and the supporting member and at least one bonding pad positioned on the roof and electrically connected to the conductive lines. A method for preparing an integrated circuit device comprises forming a stack structure including circuit structure having conductive lines on a substrate, forming a reinforcement structure including at least one supporting member on the substrate and a roof covering the supporting member and the circuit structure and forming at least one bonding pad on the roof and electrically connecting to the conductive lines.
Abstract:
A capacitance structure of a semiconductor device and a method for manufacturing the structure are provided. The capacitance structure comprises a plurality of capacitance elements and a plurality of supports. Each of the capacitance elements has a column, and each of the supports is disposed between two adjacent columns by partially connecting onto the outer surface of each of the two adjacent columns. Thereby, the mechanical properties of the capacitance structure can be enhanced.
Abstract:
A gas delivering system for an in situ thermal treatment, a thin film deposition and a use of the same are provided. The gas delivering system integrates a thermal treatment system therein so that a thin film deposition and a by rapid thermal annealing can be performed alternatively on a wafer in a reaction chamber. Accordingly, the density of the thin film can be improved and the thermal budget of the process can be reduced.
Abstract:
A method of forming a multilayer electrode capacitor is described. A trench is formed in a substrate or in an insulator layer. Two sets of conductive layers are deposited on the inner surface of the trench. The first set of conductive layers is electrically connected to each other, and so is the second set of conductive layers. Each of the second set of conductive layers is inserted between two first conductive layers, and dielectric layers are interposed between two conductive layers to form a multilayer electrode capacitor.
Abstract:
A multi-fin field effect transistor includes a substrate, an oxide layer, a conductive layer, a gate oxide layer, and a doped region is provided. The substrate is surrounded by a trench, and there are at least two fin-type silicon layers formed in the substrate in a region prepared to form a gate thereon. The oxide layer is disposed in the trench and the top surface of the oxide layer is lower than that of the fin-type silicon layers. The conductive layer is disposed in the region prepared to form a gate. The top surface of the conductive layer is higher than that of the fin-type silicon layers. The gate oxide layer is disposed between the conductive layer and the fin-type silicon layers and disposed between the conductive layer and the substrate. The doped region is disposed in the substrate on both sides of the conductive layer.
Abstract:
A recessed channel transistor comprises a semiconductor substrate having a trench isolation structure, a gate structure having a lower block in the semiconductor substrate and an upper block on the semiconductor substrate, two doped regions positioned at two sides of the upper block and above the lower block, and an insulation spacer positioned at a sidewall of the upper block and having a bottom end sandwiched between the upper block and the doped regions. In particular, the two doped regions serves as the source and drain regions, respectively, and the lower block of the gate structure serves as the recessed gate of the recessed channel transistor.
Abstract:
A multi-fin field effect transistor includes a substrate, an oxide layer, a conductive layer, a gate oxide layer, and a doped region. The substrate is surrounded by a trench, and there are at least two fin-type silicon layers formed in the substrate in a region prepared to form a gate thereon. The oxide layer is disposed in the trench and the top surface of the oxide layer is lower than that of the fin-type silicon layers. The conductive layer is disposed in the region prepared to form a gate. The top surface of the conductive layer is higher than that of the fin-type silicon layers. The gate oxide layer is disposed between the conductive layer and the fin-type silicon layers and disposed between the conductive layer and the substrate. The doped region is disposed in the substrate on both sides of the conductive layer.
Abstract:
Capacitors and methods for fabricating the same are provided. An exemplary embodiment of a capacitor comprises a dielectric layer and a first conductive layer thereover. A supporting rib is embedded in the first conductive layer and extends along a first direction. A second conductive layer is embedded in the first conductive layer and extends along a second direction perpendicular with the first direction, wherein a portion of the second conductive layer forms across the supporting rib and is structurally supported by the supporting rib. A capacitor layer is formed between the first and second conductive layers to electrically insulate the first and second conductive layers.