Abstract:
Polynucleotide-encoded capture agents for target detection and in particular modular polynucleotide-capture agents comprising a target binding component, a scaffold component and an encoding component formed by standardized molecular units that can be coupled and decoupled in a controlled fashion, and related compositions methods and systems.
Abstract:
Fabrication of metallic or non-metallic wires with nanometer widths and nanometer separation distances without the use of lithography. Wires are created in a two-step process involving forming the wires at the desired dimensions and transferring them to a planar substrate. The dimensions and separation of the wires are determined by the thicknesses of alternating layers of different materials that are in the form of a superlattice. Wires are created by evaporating the desired material onto the superlattice that has been selectively etched to provide height contrast between layers. The wires thus formed upon one set of superlattice layers are then transferred to a substrate.
Abstract:
A patterning method for the creation of two-dimensional nanowire structures. Nanowire patterning methods are used with lithographical patterning approaches to form patterns in a layer of epoxy and resist material. These patterns are then transferred to an underlying thin film to produce a two-dimensional structure with desired characteristics.
Abstract:
New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.
Abstract:
Methods for making electronic devices where a molecular monolayer or multilayer is sandwiched between top and bottom electrodes at electrode intersections. The molecular layer has an electrical characteristic such as bistable switching. A layer of electrically conductive material is used to protect the molecular layer during formation of the top electrode pattern. The electrically conductive material remains sandwiched between the top and bottom electrodes at the electrode intersections in the final electronic device.
Abstract:
A nanomesh phononic structure includes: a sheet including a first material, the sheet having a plurality of phononic-sized features spaced apart at a phononic pitch, the phononic pitch being smaller than or equal to twice a maximum phonon mean free path of the first material and the phononic size being smaller than or equal to the maximum phonon mean free path of the first material.
Abstract:
The present application provides stable peptide-based Akt capture agents and the use thereof as detection, diagnosis, and treatment agents. The application further provides novel methods of developing stable peptide-based capture agents, including Akt capture agents, using iterative on-bead in situ click chemistry.
Abstract:
Described herein are automated, integrated microfluidic device comprising a chemical reaction chip comprising for performing chemical reaction, a microscale column integrated with the chip and configured for liquid flow from the column to at least one flow channel, and wherein the fluid flow into the column is controlled by on-chip valves; and comprising at least two on-chip valves for controlling fluid flow in the microfluidic device.
Abstract:
A patterning method for the creation of two-dimensional nanowire structures. Nanowire patterning methods are used with lithographical patterning approaches to form patterns in a layer of epoxy and resist material. These patterns are then transferred to an underlying thin film to produce a two-dimensional structure with desired characteristics.