Abstract:
A system for reducing ammonia in exhaust gas generated from a lean burn internal combustion engine includes an oxidation catalyst, a selective reduction catalyst (SCR), a cooling unit, and a three-way catalyst. Exhaust gas generated by the engine passes through the oxidation catalyst to oxidize carbon monoxide from the exhaust gas to form carbon dioxide. Nitrous oxide (NOx) compounds in the exhaust gas are reduced in the SCR to form nitrogen and water. The exhaust gas is then cooled in a cooling unit and then passed over the three-way catalyst. The three-way catalyst causes ammonia in the cooled exhaust stream to react to form less harmful compounds, such as nitrogen and water.
Abstract:
An assembly and method for reducing nitrogen oxides, carbon monoxide and hydrocarbons in exhausts of internal combustion engines, wherein the exhaust is acted upon in a first stage catalytic converter. A first portion of the first stage catalytic converter output is cooled and a second portion of the catalytic converter output is not cooled. The cooled and not cooled exhausts are united and directed to a second stage catalytic converter. Air is injected into a selected one of (1) the not cooled exhaust prior to the juncture thereof with the cooled exhaust, and (2) the combined cooled and not cooled exhausts after the juncture thereof.
Abstract:
An assembly and method for reducing nitrogen oxides, carbon monoxide and hydrocarbons in exhausts of internal combustion engines, wherein the exhaust is acted upon in a first stage catalytic converter. A first portion of the first stage catalytic converter output is cooled and a second portion of the catalytic converter output is not cooled. The cooled and not cooled exhausts are united and directed to a second stage catalytic converter. Air is injected into a selected one of (1) the not cooled exhaust prior to the juncture thereof with the cooled exhaust, and (2) the combined cooled and not cooled exhausts after the juncture thereof.
Abstract:
A hybrid power-generator system includes an engine, an electric generator, first and second rectifiers, first and second DC-DC voltage converters, a DC bus, an inverter, and one or more controllers. The system provides a unique method of joining two power sources such that the relative proportion utilized can be changed to any value seamlessly, such as to avoid daily and/or seasonal variations in utility charges. Since the AC output portion of the circuit is independent of the utility grid, power can be supplied at variable frequencies to motor loads with significant positive impacts in load efficiency. Power increases required by the load(s) that occur rapidly can utilize the electrical grid to assist for the brief transient, allowing the engine, which is maintained at a fixed and wide-open-throttle position, to continue operation and in a more gradual process to resume its blend target for power generation.
Abstract:
A hybrid power-generator system includes an engine, an electric generator, first and second rectifiers, first and second DC-DC voltage converters, a DC bus, an inverter, and one or more controllers. The system provides a unique method of joining two power sources such that the relative proportion utilized can be changed to any value seamlessly, such as to avoid daily and/or seasonal variations in utility charges. Since the AC output portion of the circuit is independent of the utility grid, power can be supplied at variable frequencies to motor loads with significant positive impacts in load efficiency. Power increases required by the load(s) that occur rapidly can utilize the electrical grid to assist for the brief transient, allowing the engine, which is maintained at a fixed and wide-open-throttle position, to continue operation and in a more gradual process to resume its blend target for power generation.
Abstract:
Exhaust generated from an internal combustion engine includes particulates and gas-phase volatile hydrocarbon condensables. The exhaust is cooled in an exhaust gas cooler from a first temperature to a second temperature such that a first portion of the gas-phase volatile hydrocarbon condensables in the exhaust condense to the liquid phase and a second portion of the gas-phase volatile hydrocarbon condensables in the exhaust condense on black carbon particles to form semivolatile brown carbon particulates. Some or all of the liquid-phase volatile hydrocarbon condensables and the semivolatile brown carbon particulates are trapped in a gasoline particulate filter or a catalyzed gasoline particulate filter located downstream of the exhaust gas cooler.
Abstract:
Systems and methods of reducing the emissions of vehicles having a spark ignited internal combustion engine are provided. When the exhaust temperature is less than a set point temperature, the oxygen concentration of the exhaust is increased as the exhaust passes from a first stage catalytic converter to a second stage catalytic converter. The increased oxygen content of the exhaust improves the removal efficiency of carbon monoxide and/or hydrocarbons at the second stage catalytic converter without (or with minimal) reforming nitrogen oxide compounds. The oxygen concentration of the exhaust is not increased when the exhaust temperature is greater than the set point temperature.
Abstract:
Methods and apparatus for removing undesired pollutants from exhausts streams of spark-ignited internal-combustion engines in vehicles while producing electrical energy as a byproduct. The apparatus includes a reduction catalyst, a thermoelectric generator (TEG), and an oxidation catalyst. The TEG cools the exhaust stream and generates electricity. The exhaust stream is oxygenated after passing through the TEG and prior to passing through the oxidation catalyst.
Abstract:
A system and method for controlling an internal combustion engine and electrical inverter system for powering a load, including controlling the operation of a spark-ignited internal combustion engine prime mover used in generation of electrical power by way of a generator. A microprocessor (e.g., DSP) controlled circuit taking engine speed input from an engine speed signal is used to control the operation of the internal combustion engine prime mover so that it is preferably operated substantially at wide open throttle.
Abstract:
A poison-resistant catalytic converter includes a washcoat having a support material comprised of titania and/or silica and a plurality of platinum group metal particles disposed in the support material. The washcoat is disposed on a substrate having a plurality of cells that define respective apertures. The catalytic converter is resistant to poisoning from sulfur and phosphorous compounds while operating at low temperatures. Applications include spark ignited internal combustion engines in combined heat and power systems, vehicles, combustion turbines, boilers and other applications for utilities, industry and vehicle emissions control.