Abstract:
An apparatus and methods for controlling energy consumption of an electronic device determine an availability of an energy source to provide energy to the electronic device. The apparatus and methods control, by power management control logic of the electronic device, energy consumption of the electronic device in response to determining the availability of the energy source.
Abstract:
The described embodiments include a computing device with an entity (a processor, a processor core, etc.) and a controller. In these embodiments, the controller, using an idle duration history, predicts a duration of a next idle period for the entity. Based on the predicted duration of the next idle period, the controller configures the entity to operate in a corresponding idle state.
Abstract:
The present application describes embodiments of methods for tournament prediction of power gating in processing devices. Some embodiments of the method include selecting one of a plurality of predictions of a duration of a time to a power state transition of a component in a processing device. The plurality of predictions are generated using a corresponding plurality of prediction algorithms. Some embodiments of the method also include deciding whether to transition the component from a first power state to a second power state based on the selected prediction.
Abstract:
The described embodiments include a computing device with a first entity and a second entity. In the computing device, a management controller dynamically sets a power-state limit for the first entity based on a performance coupling and a thermal coupling between the first entity and the second entity.
Abstract:
Various circuit board embodiments are disclosed. In one aspect, an apparatus is provided that includes a circuit board and a first phase change material pocket positioned on or in the circuit board and contacting a surface of the circuit board.
Abstract:
A plurality of thermal electric cooler (TEC) elements are formed in a TEC grid structure. Control logic dynamically varies a supply current supplied to each TEC element (or group of TEC elements) in the TEC grid based on changes in power density respectively associated with areas cooled by each of the TEC elements or group of TEC elements.
Abstract:
Systems, apparatuses, and methods for managing variations among nodes in parallel system frameworks. Sensor and performance data associated with the nodes of a multi-node cluster may be monitored to detect variations among the nodes. A variability metric may be calculated for each node of the cluster based on the sensor and performance data associated with the node. The variability metrics may then be used by a mapper to efficiently map tasks of a parallel application to the nodes of the cluster. In one embodiment, the mapper may assign the critical tasks of the parallel application to the nodes with the lowest variability metrics. In another embodiment, the hardware of the nodes may be reconfigured so as to reduce the node-to-node variability.
Abstract:
A processing system includes one or more processing units to perform operations and one or more sensors to measure a temperature concurrently with the one or more processing units performing the operations. The processing system also includes a controller to receive feedback indicating the temperature and to determine a peak temperature and a thermal time constant for heating of the processing system based on a comparison of the measured temperature to a first temperature that is predicted based on the peak temperature and a previously determined thermal time constant for heating. Some embodiments of the controller can control a performance state of the processing system based on the peak temperature and the thermal time constant for heating of the processing system.
Abstract:
Methods, devices, and systems for capturing an accuracy of an instruction executing on a processor. An instruction may be executed on the processor, and the accuracy of the instruction may be captured using a hardware counter circuit. The accuracy of the instruction may be captured by analyzing bits of at least one value of the instruction to determine a minimum or maximum precision datatype for representing the field, and determining whether to adjust a value of the hardware counter circuit accordingly. The representation may be output to a debugger or logfile for use by a developer, or may be output to a runtime or virtual machine to automatically adjust instruction precision or gating of portions of the processor datapath.
Abstract:
A computing system includes a set of computing resources and a datastore to store information representing a corresponding idle power consumption metric and a corresponding peak power consumption metric for each computing resource of the set. The computing system further includes a controller coupled to the set of computing resources and the datastore. The controller is to configure the set of computing resources to meet a power budget constraint for the set based on the corresponding idle power consumption metric and the corresponding peak power consumption metric for each computing resource of the set.