Abstract:
A signal attenuation reduction structure for a flexible circuit board includes a conductive paste coating zones formed on surfaces of high-frequency signal lines and an insulation layer formed on a dielectric layer of the flexible circuit board such that the conductive paste coating zone corresponds to a pair of high-frequency signal lines or covers a plurality of pairs of the high-frequency signal lines. An anisotropic conductive film is formed on surfaces of the insulation layer and the conductive paste coating zone of the flexible circuit board. The anisotropic conductive film is pressed to bond between the conductive paste coating zone and a shielding layer such that the conductive paste coating zone and the shielding layer achieve electrical connection therebetween in a vertical direction through the anisotropic conductive film.
Abstract:
An interconnecting conduction structure for electrically connecting conductive traces of a lapped flexible circuit board is disclosed. The lapped flexible circuit board includes a first flexible circuit board and a second flexible circuit board. A through hole is formed in the second flexible circuit board and an interconnecting conduction member is filled in the through hole of the second flexible circuit board. The interconnecting conduction member is electrically connected to a second solder pad of the second flexible circuit board and a first solder pad of the first flexible circuit board in order to formed a lapped connection between conductive traces of the first flexible circuit board and the second flexible circuit board.
Abstract:
A conductive connection structure for a conductive wiring layer of a flexible circuit board includes a first through hole and a second through hole formed in a lamination structure including a conductive wiring layer, a first covering layer, and a second covering layer. The first through hole extends through the first covering layer and the conductive wiring layer. The second through hole extends through the second covering layer. The second through hole is formed at a location corresponding to an exposed zone on a second surface of the conductive wiring layer and communicates with the first through hole. A first conductive paste layer is formed on a surface of the first covering layer and fills in the first through hole to form a pillar portion in the first through hole. The pillar portion has a bottom end forming a curved cap. The exposed zone of the second surface of the conductive wiring layer is at least partially covered by the curved cap.
Abstract:
A differential mode signal transmission module includes a first section having an external connection end on which at least a pair of differential mode signal transmission terminals are formed and includes a grounding terminal, a first differential mode signal terminal, and a second differential mode signal terminal. The extension connection end of the first section forms a counterpart signal terminals corresponding to those of the external connection end. At least one first conductive connection line is formed on the first section. The conductive connection line connects the grounding terminal of the external connection end of the first section to a collective grounding point. The extension connection end of the first section is connected to an extension section. The extension section is further connected to a second section opposite to the first section. The extension section includes at least one slit line in order to form a bundled section. The first section, the second section, and the extension section include at least one fold line.
Abstract:
Disclosed is a structure of a flexible circuit board combined with a carrier board. The carrier board includes a thick copper layer, a thin copper layer, and a release layer formed between the thick copper layer and the thin copper layer. The flexible circuit substrate and the carrier board are bonded together by an adhesive layer. In a subsequent process, the release layer, together with the thick copper layer, is peeled from a top surface of the thin copper layer and the thin copper layer is preserved by being bonded by the adhesive layer to the flexible circuit substrate.
Abstract:
A structure of via hole of electrical circuit board includes an adhesive layer and a conductor layer that are formed after wiring is formed on a carrier board. At least one through hole extends in a vertical direction through the carrier board, the wiring, the adhesive layer, and the conductor layer and forms a hole wall surface. The conductor layer shows a height difference with respect to an exposed zone of the circuit trace in the vertical direction. A conductive cover section covers the conductor layer and the hole wall surface of the through hole. The carrier board is a single-sided board, a double-sided board, a multi-layered board, or a combination thereof, and the single-sided board, the double-sided board, and multi-layered board can be flexible boards, rigid boards, or composite boards combining flexible and rigid boards.
Abstract:
Disclosed urea microvia structure of a flexible circuit board and a manufacturing method thereof. A first through hole is formed in a first conductive layer of a flexible circuit board and a first exposed zone is defined. A second conductive layer includes a second through hole formed therein and defines a second exposed zone. A dielectric layer includes a dielectric layer through hole corresponding to the second through hole of the second conductive layer. A conductive paste layer is filled in the second through hole of the second conductive layer, the dielectric layer through hole of the dielectric layer, and the first through hole of the first conductive layer in such a way that the conductive paste layer covers and electrically contacts the first exposed zone of the first conductive layer and the second exposed zone of the second conductive layer.
Abstract:
Disclosed is contact pad connection structure for connecting a conductor assembly and a flexible circuit board. A substrate has a top surface on which a plurality of elevation pads are formed and respectively located in spacing zones between contact pads. Each of the elevation pads has a height above a top contact surface of the contact pads. The conductor assembly has exposed conductors that are respectively set in contact with the top contact surfaces of the contact pads and a solder material is applied to solder and fix the exposed conductors respectively in position on the top contact surfaces of the contact pads. Each of the elevation pads includes an extension section extended in a direction toward a front edge of the substrate.
Abstract:
A rigid-flexible circuit board includes at least one flexible circuit board and at least one rigid circuit board. The flexible circuit board includes a flexible-board substrate, a plurality of flexible circuit board differential mode signal lines, at least one flexible circuit board grounding line, a flexible circuit board insulation layer formed on the upper surface of the flexible-board substrate and covering the flexible circuit board differential mode signal lines and the flexible circuit board grounding line. The rigid circuit board is stacked on the stacking section of the flexible circuit board. A shielding layer is formed on the flexible circuit board insulation layer of the flexible circuit board and corresponds to the extension section of the flexible circuit board. The shielding layer further extends from the extension section to the stacking section. An impedance control structure is formed on the shielding layer to control the impedance of the flexible circuit board differential mode signal lines.
Abstract:
Disclosed is a penetration and assembly structure for a flexible circuit board with a hinge assembly. With a pre-folding line formed on a pre-prepared flexible circuit board serving as a center line, a connection section of the flexible circuit board is folded to a terminal distribution section, and then, the connection section and an extended sheet are wound up in a direction towards the terminal distribution section to form the connection section into a rolled body with the extended sheet wrapped around the rolled body to provide an effect of protection. The rolled body is then inserted through a bore of a hinge assembly so that after the rolled body completely passes through the bore of the hinge assembly, the extension section of the flexible circuit board is located in the bore of the hinge assembly and the first end and the second end are respectively set at opposite ends of the bore of the hinge assembly. In other applications, a reinforcement plate is included to reinforce the terminal distribution section of the flexible circuit board.