Abstract:
A method of making a microelectronic spring contact array comprises forming a plurality of spring contacts on a sacrificial substrate and then releasing the spring contacts from the sacrificial substrate. Each of the spring contacts has an elongated beam having a base end. The method of making the array includes attaching the spring contacts at their base ends to a base substrate after they have been released entirely from the sacrificial substrate, so that each contact extends from the base substrate to a distal end of its beams. The distal ends are aligned with a predetermined array of tip positions. In an embodiment of the invention, the spring contacts are formed by patterning contours of the spring contacts in a sacrificial layer on the sacrificial substrate. The walls of patterned recesses in the sacrificial layer define side profiles of the spring contacts, and a conductive material is deposited in the recesses to form the elongated beams of the spring contacts.
Abstract:
Resilient spring contacts for use in wafer test probing are provided that can be manufactured with a very fine pitch spacing and precisely located on a support substrate. The resilient contact structures are adapted for wire bonding to an electrical circuit on a space transformer substrate. The support substrates with attached spring contacts can be manufactured together in large numbers and diced up and tested before attachment to a space transformer substrate to improve yield. The resilient spring contacts are manufactured using photolithographic techniques to form the contacts on a release layer, before the spring contacts are epoxied to the support substrate and the release layer removed. The support substrate can be transparent to allow alignment of the contacts and testing of optical components beneath. The support substrate can include a ground plane provided beneath the spring contacts for improved impedance matching.
Abstract:
A central test facility transmits wirelessly test data to a local test facility, which tests electronic devices using the test data. The local test facility transmits wirelessly response data generated by the electronic devices back to the central test facility, which analyzes the response data to determine which electronic devices passed the testing. The central test facility may provide the results of the testing to other entities, such as a design facility where the electronic devices were designed or a manufacturing facility where the electronic devices where manufactured. The central test facility may accept requests for test resources from any of a number of local test facilities, schedule test times corresponding to each test request, and at a scheduled test time, wirelessly transmits test data to a corresponding local test facility.
Abstract:
A method of designing and manufacturing a probe card assembly includes prefabricating one or more elements of the probe card assembly to one or more predefined designs. Thereafter, design data regarding a newly designed semiconductor device is received along with data describing the tester and testing algorithms to be used to test the semiconductor device. Using the received data, one or more of the prefabricated elements is selected. Again using the received data, one or more of the selected prefabricated elements is customized. The probe card assembly is then built using the selected and customized elements.
Abstract:
Interconnect assemblies and methods for forming and using them. In one example of the invention, an interconnect assembly comprises a substrate, a resilient contact element and a stop structure. The resilient contact element is disposed on the substrate and has at least a portion thereof which is capable of moving to a first position, which is defined by the stop structure, in which the resilient contact element is in mechanical and electrical contact with another contact element. In another example of the invention, a stop structure is disposed on a first substrate with a first contact element, and this stop structure defines a first position of a resilient contact element, disposed on a second substrate, in which the resilient contact element is in mechanical and electrical contact with the first contact element. Other aspects of the invention include methods of forming the stop structure and using the structure to perform testing of integrated circuits, including for example a semiconductor wafer of integrated circuits.
Abstract:
An apparatus including a substrate having a plurality of through holes and a plurality of cables, including wires and/or coaxial cables, extending through respective ones of the plurality of through holes of the substrate. Each of the cables comprises a conductor and terminates about a surface of the substrate such that the conductors of respective ones of plurality of cables are planarly aligned and available for electrical contact. A system including a cable interface extending through respective ones of a plurality of through holes of a body of the interface; an interconnection component comprising a first plurality of contact points aligned with respective ones of conductors of the plurality of cables and a second plurality of contact points aligned to corresponding contact points of a device to be tested. Also, a method of routing signals through the conductors of the plurality of cables between electronic components.
Abstract:
Spring contact elements are fabricated by depositing at least one layer of metallic material into openings defined on a sacrificial substrate. The openings may be within the surface of the substrate, or in one or more layers deposited on the surface of the sacrificial substrate. Each spring contact element has a base end portion, a contact end portion, and a central body portion. The contact end portion is offset in the z-axis (at a different height) than the central body portion. The base end portion is preferably offset in an opposite direction along the z-axis from the central body portion. In this manner, a plurality of spring contact elements are fabricated in a prescribed spatial relationship with one another on the sacrificial substrate. The spring contact elements are suitably mounted by their base end portions to corresponding terminals on an electronic component, such as a space transformer or a semiconductor device, whereupon the sacrificial substrate is removed so that the contact ends of the spring contact elements extend above the surface of the electronic component. In an exemplary use, the spring contact elements are thereby disposed on a space transformer component of a probe card assembly so that their contact ends effect pressure connections to corresponding terminals on another electronic component, for the purpose of probing the electronic component.
Abstract:
An interconnection element and a method of forming an interconnection element. In one embodiment, the interconnection element includes a first structure and a second structure coupled to the first structure. The second structure coupled with the first material has a spring constant greater than the spring constant of the first structure alone. In one embodiment, the interconnection element is adapted to be coupled to an electronic component tracked as a conductive path from the electronic component. In one embodiment, the method includes forming a first (interconnection) structure coupled to a substrate to define a shape suitable as an interconnection in an integrated circuit environment and then coupling, such as by coating, a second (interconnection) structure to the first (interconnection) structure to form an interconnection element. Collectively, the first (interconnection) structure and the second (interconnection) structure have a spring constant greater than a spring constant of the first (interconnection) structure.
Abstract:
Methods of fabricating an array of aligned microstructures on a substrate are disclosed. The microstructures may be spring contacts or other microelements. The methods disclosed include construction of an alignment substrate, alignment of die elements with the alignment substrate, and fixation of the aligned die elements to a backing substrate.
Abstract:
A base controller disposed in a test cassette receives test data for testing a plurality of electronic devices. The base controller wirelessly transmits the test data to a plurality of wireless test control chips, which write the test data to each of the electronic devices. The wireless test control chips then read response data generated by the electronic devices, and the wireless test control chips wirelessly transmit the response data to the base controller.