Abstract:
One illustrative method disclosed herein includes forming a plurality of spaced-apart fin structures in a semiconductor substrate, wherein the fin structures define a portion of an alignment/overlay mark trench where at least a portion of an alignment/overlay mark will be formed, forming at least one layer of insulating material that overfills the alignment/overlay mark trench and removing excess portions of the layer of insulating material positioned above an upper surface of the plurality of fins to thereby define at least a portion of the alignment/overlay mark positioned within the alignment/overlay mark trench. A device disclosed herein includes a plurality of spaced-apart fin structures formed in a semiconductor substrate so as to partially define an alignment/overlay mark trench, an alignment/overlay mark consisting only of at least one insulating material positioned within the alignment/overlay mark trench, and a plurality of FinFET semiconductor devices formed in and above the substrate.
Abstract:
A method of forming a nanowire device includes patterning a plurality of semiconductor material layers such that each layer has first and second exposed end surfaces. The method further includes forming doped extension regions in the first and second exposed end surfaces of the semiconductor material layers. The method further includes, after forming the doped extension regions, forming epi semiconductor material in source and drain regions of the device.
Abstract:
A device includes a gate structure and a nanowire channel structure positioned under the gate structure. The nanowire channel structure includes first and second end surfaces. The device further includes a first insulating liner positioned on the first end surface and a second insulating liner positioned on the second end surface. The device further includes a metal-containing source contact positioned on the first insulating liner and a metal-containing drain contact positioned on the second insulating liner.
Abstract:
One method includes forming a plurality of first trenches in a semiconductor substrate to thereby define a plurality of initial fins in the substrate, removing at least one, but less than all, of the plurality of initial fins, forming a fin protection layer on at least the sidewalls of the remaining initial fins, with the fin protection layer in position, performing an etching process to extend a depth of the first trenches to thereby define a plurality of final trenches with a final trench depth, wherein the final trenches define a plurality of final fin structures that each comprise an initial fin, removing the fin protection layer, and forming a recessed layer of insulating material in the final trenches, wherein the recessed layer of insulating material has a recessed surface that exposes a portion of the final fin structures.
Abstract:
In one example, the method disclosed herein includes forming a shared sacrificial gate structure above at least one first fin for a first type of FinFET device and at least one second fin for a second type of FinFET device, wherein the second type is opposite to the first type, and forming a first sidewall spacer around an entire perimeter of the sacrificial gate structure in a single process operation.
Abstract:
A method includes forming at least one fin in a semiconductor substrate. A fin spacer is formed on at least a first portion of the at least one fin. The fin spacer has an upper surface. The at least one fin is recessed to thereby define a recessed fin with a recessed upper surface that it is at a level below the upper surface of the fin spacer. A first epitaxial material is formed on the recessed fin. A lateral extension of the first epitaxial material is constrained by the fin spacer. A cap layer is formed on the first epitaxial material. The fin spacer is removed. The cap layer protects the first epitaxial material during the removal of the fin spacer.
Abstract:
Integrated circuits having silicide contacts with reduced contact resistance and methods for fabricating integrated circuits having silicide contacts with reduced contact resistance are provided. In an embodiment, a method for fabricating an integrated circuit includes providing a semiconductor substrate having selected source/drain regions and non-selected source/drain regions. The method forms a contact resistance modulation material over the selected source/drain regions. Further, the method forms a metal layer over the selected and non-selected source/drain regions. The method includes annealing the metal layer to form silicide contacts on the selected and non-selected source/drain regions.
Abstract:
One method disclosed herein includes forming a sacrificial gate structure comprised of upper and lower sacrificial gate electrodes, performing at least one etching process to define a patterned upper sacrificial gate electrode comprised of a plurality of trenches that expose a portion of a surface of the lower sacrificial gate electrode and performing another etching process through the patterned upper sacrificial gate electrode to remove the lower sacrificial gate electrode and a sacrificial gate insulation layer and thereby define a first portion of a replacement gate cavity that is at least partially positioned under the patterned upper sacrificial gate electrode.
Abstract:
One method disclosed herein includes forming a sacrificial gate structure comprised of upper and lower sacrificial gate electrodes, performing at least one etching process to define a patterned upper sacrificial gate electrode comprised of a plurality of trenches that expose a portion of a surface of the lower sacrificial gate electrode and performing another etching process through the patterned upper sacrificial gate electrode to remove the lower sacrificial gate electrode and a sacrificial gate insulation layer and thereby define a first portion of a replacement gate cavity that is at least partially positioned under the patterned upper sacrificial gate electrode.
Abstract:
A FinFET device includes a plurality of fin structures positioned in and above a semiconducting substrate, wherein each of the fin structures includes a first portion of the semiconducting substrate, an undoped layer of semiconducting material positioned above the first portion of the semiconducting substrate, and a dopant-containing layer of semiconducting material positioned between the first portion of the semiconducting substrate and the undoped semiconducting material, wherein the dopant material is adapted to retard diffusion of one of boron and phosphorous. A gate electrode is positioned around at least the undoped layer of semiconducting material of each of the plurality of fin structures, wherein a height level of a bottom surface of the gate electrode is positioned approximately level with or lower than a height level of a bottom of the undoped layer of semiconducting material of each of the plurality of fin structures.