Abstract:
This invention provides a multilayer printed wiring board in which electric connectivity and functionality are obtained by improving reliability and particularly, reliability to the drop test can be improved. No corrosion resistant layer is formed on a solder pad 60B on which a component is to be mounted so as to obtain flexibility. Thus, if an impact is received from outside when a related product is dropped, the impact can be buffered so as to protect any mounted component from being removed. On the other hand, land 60A in which the corrosion resistant layer is formed is unlikely to occur contact failure even if a carbon pillar constituting an operation key makes repeated contacts.
Abstract:
A wiring substrate has a frame including a metal material and having a connecting portion, and a piece substrate connected to the connecting portion of the frame and having a metal pattern. The metal pattern of the piece substrate has a contour which is corresponding to an outer edge of the connecting portion of the frame.
Abstract:
A flex-rigid wiring board includes a flexible substrate, a first non-flexible substrate positioned on a first side of the flexible substrate, a second non-flexible substrate positioned on a second side of the flexible substrate, a first insulation layer laminated on first surfaces of the flexible substrate and first and second non-flexible substrates, and a second insulation layer laminated on second surfaces of the flexible substrate and first and second non-flexible substrates. Each of the first and second insulation layers has an opening portion exposing a portion of the flexible substrate such that the portion of the flexible substrate forms a flexible section connecting non-flexible rigid sections, and the first and second non-flexible substrates include a heat dissipating portion including a heat dissipating material having thermal conductivity which is higher than thermal conductivity of the first and second insulation layers.
Abstract:
A combined wiring board has multiple piece components each including a wiring board, and a frame component having an accommodation opening portion and holding the multiple piece components in the accommodation opening portion such that each of the piece components is fixed to the frame component at an outer rim of each of the piece components. The frame component has a thermal expansion coefficient in a planar direction which is set higher than a thermal expansion coefficient of the multiple piece components in the planar direction.
Abstract:
A combined wiring board includes a wiring board set having multiple wiring boards and one or more adhesive agent portions such that the wiring boards are connected each other by the adhesive agent portion or adhesive agent portions, and a metal frame having an accommodation opening portion formed to accommodate the wiring board set such that the wiring board set is positioned in the accommodation opening portion of the metal frame.
Abstract:
A combined wiring board includes a metal frame having multiple opening portions, and multiple wiring boards accommodated in the opening portions in the metal frame, respectively. The opening portions in the metal frame have side walls having holding portions such that the holding portions hold the wiring boards in the opening portions in the metal frame, and the metal frame has slit portions adjacent to the holding portions and connecting portions connecting the slit portions to the opening portions.
Abstract:
A plug-in board replacement method includes preparing a board having a piece board, forming first conductive pattern on first surface of the board, forming second conductive pattern on second surface on the opposite side such that the second pattern is on the opposite side of the first pattern, irradiating laser upon the first and second surfaces along the first and second patterns such that the piece is cut out from the board, and fitting the piece into another board. The irradiating includes irradiating laser upon the first surface along the first pattern such that laser is irradiated along the border between edge portion of the first pattern and the first surface and laser upon the second surface along the second pattern such that laser is irradiated along the border between edge portion of the second pattern and the second surface such that the piece is cut out through the board.
Abstract:
A combined wiring board includes a metal frame having multiple opening portions, and multiple wiring boards accommodated in the opening portions in the metal frame, respectively. The opening portions in the metal frame have side walls having holding portions such that the holding portions hold the wiring boards in the opening portions in the metal frame, and the metal frame has slit portions adjacent to the holding portions and connecting portions connecting the slit portions to the opening portions.
Abstract:
A wiring board includes an insulating substrate, a first conductor layer laminated on a first side of the insulating substrate, a second conductor layer laminated on a second side of the insulating substrate, first plating posts fitted in through holes in the insulating substrate respectively such that the first plating posts are projecting from the first conductor layer, and plating connecting parts connecting the second conductor layer and the first plating posts and having electronic component connecting portions such that the electronic component connecting portions form an electronic component mounting part positioned to mount an electronic component and are positioned on the through holes, respectively.
Abstract:
A combined wiring board includes multiple metal frames arrayed in a first direction, and multiple wiring boards bonded to the metal frames such that the wiring boards are arrayed in the first direction. The metal frames directly or indirectly engage with the wiring boards such that each of the metal frames is positioned between two adjacent wiring boards of the wiring boards.