Abstract:
A method for forming a semiconductor structure comprising: providing a silicon substrate having a first and a second flat top surface belonging to a first and a second substrate region respectively, the first top surface being lower than the second top surface, thereby forming a step delimiting the first and the second substrate region. The method further comprises forming, at least partially, one or more silicon semiconductor devices in the second substrate region, and forming, at least partially, one or more III-V semiconductor devices in the first substrate region.
Abstract:
An example method includes providing a layer stack in a trench defined by adjacent STI structures and recessing the STI structures adjacent to the layer stack to thereby expose an upper portion of the layer stack, the upper portion comprising at least a channel portion. The method further includes providing one or more protection layers on the upper portion of the layer stack and then further recessing the STI structures selectively to the protection layers and the layer stack, to thereby expose a central portion of the layer stack. And the method includes removing the central portion of the layer stack, resulting in a freestanding upper part and a lower part of the layer stack being physically separated from each other.
Abstract:
The disclosed technology generally relates to semiconductor devices, and more particularly to transistor devices comprising multiple channels. In one aspect, a method of fabricating a transistor device comprises forming on the substrate a plurality of vertically repeating layer stacks each comprising a first layer, a second layer and a third layer stacked in a predetermined order, wherein each of the first, second and third layers is formed of silicon, silicon germanium or germanium and has a different germanium concentration compared to the other two of the first, second and third layers. The method additionally includes selectively removing the first layer with respect to the second and third layers from each of the layer stacks, such that a gap interposed between the second layer and the third layer is formed in each of the layer stacks. The method further includes selectively removing the second layer from each of the layer stacks with respect to the third layer, wherein removing the second layer comprises at least partially removing the second layer through the gap, thereby defining the channels comprising a plurality of vertically arranged third layers.
Abstract:
A process for creating a contact on a Ge-containing contact region of a semiconductor structure, said process comprising the steps of: providing said semiconductor structure comprising: (i) a Ge-containing contact region, (ii) optionally, a SiO2 layer coating said Ge-containing contact region, (iii) a Si3N4 layer coating said SiO2 layer if present or said Ge-containing contact region; etching selectively the Si3N4 layer by means of an inductively coupled plasma, thereby exposing the underlying SiO2 layer if present or the Ge-containing contact region; etching selectively the SiO2 layer if present, thereby exposing the SiGe:B contact region; and creating said contact on said Ge-containing contact region.
Abstract translation:一种用于在半导体结构的含锗接触区域上形成接触的方法,所述方法包括以下步骤:提供所述半导体结构,包括:(i)含Ge接触区域,(ii)任选的SiO 2层涂层 所述含Ge接触区域,(iii)涂覆所述SiO 2层(如果存在)或所述含Ge接触区域的Si 3 N 4层; 通过电感耦合等离子体选择性地蚀刻Si 3 N 4层,从而暴露下面的SiO 2层(如果存在)或含Ge接触区域; 选择性地蚀刻SiO 2层(如果存在),从而暴露SiGe:B接触区域; 以及在所述含Ge接触区域上产生所述接触。
Abstract:
An example method includes providing a layer stack in a trench defined by adjacent STI structures and recessing the STI structures adjacent to the layer stack to thereby expose an upper portion of the layer stack, the upper portion comprising at least a channel portion. The method further includes providing one or more protection layers on the upper portion of the layer stack and then further recessing the STI structures selectively to the protection layers and the layer stack, to thereby expose a central portion of the layer stack. And the method includes removing the central portion of the layer stack, resulting in a freestanding upper part and a lower part of the layer stack being physically separated from each other.
Abstract:
A method for forming a III-V construction over a group IV substrate comprises providing an assembly comprising the group IV substrate and a dielectric thereon. The dielectric layer comprises a trench exposing the group IV substrate. The method further comprises initiating growth of a first III-V structure in the trench, continuing growth out of the trench on top of the bottom part, growing epitaxially a sacrificial second III-V structure on the top part of the first III-V structure, and growing epitaxially a third III-V structure on the sacrificial second III-V structure. The third III-V structure comprises a top III-V layer. The method further comprises physically disconnecting a first part of the top layer from a second part thereof, and contacting the sacrificial second III-V structure with the liquid etching medium.
Abstract:
A method for fabricating a heterojunction bipolar transistor (HBT) comprises providing a semiconductor support layer and forming an even number of at least four elongated wall structures on the support layer. The wall structures are arranged side-by-side at a regular interval. An odd number of at least three semiconductor collector-material ridge structures are formed on the support layer. Each ridge structure is formed between two adjacent wall structures. A semiconductor base-material layer is formed on a determined ridge structure of the at least three ridge structures. A semiconductor emitter-material layer is formed on the base-material layer. The base-material layer is epitaxially extended so that it coherently covers all the wall structures and all the ridge structures. All the ridge structures except for the determined ridge structure are selectively removed.
Abstract:
Example embodiments relate to germanium nanowire fabrication. One embodiment includes a method of forming a semiconductor device that includes at least one Ge nanowire. The method includes providing a semiconductor structure that includes at least one, the at least one fin including a stack of at least one Ge layer alternative with SiGe layers. The method also includes at least partially oxidizing the SiGe layer into SiGeOx. Further, the method includes capping the fin with a dielectric material. In addition, the method includes annealing. Still further, the method includes selectively removing the dielectric material and the SiGeOx.
Abstract:
A method for forming a semiconductor structure comprising: providing a silicon substrate having a first and a second flat top surface belonging to a first and a second substrate region respectively, the first top surface being lower than the second top surface, thereby forming a step delimiting the first and the second substrate region. The method further comprises forming, at least partially, one or more silicon semiconductor devices in the second substrate region, and forming, at least partially, one or more III-V semiconductor devices in the first substrate region.
Abstract:
Example embodiments relate to germanium nanowire fabrication. One embodiment includes a method of forming a semiconductor device that includes at least one Ge nanowire. The method includes providing a semiconductor structure that includes at least one, the at least one fin including a stack of at least one Ge layer alternative with SiGe layers. The method also includes at least partially oxidizing the SiGe layer into SiGeOx. Further, the method includes capping the fin with a dielectric material. In addition, the method includes annealing. Still further, the method includes selectively removing the dielectric material and the SiGeOx.