-
11.
公开(公告)号:US20250113521A1
公开(公告)日:2025-04-03
申请号:US18478626
申请日:2023-09-29
Applicant: Intel Corporation
Inventor: Andrey Vyatskikh , Paul B. Fischer , Paul Killian Nordeen , Uygar E. Avci , Mahmut Sami Kavrik , Ande Kitamura , Kirby Maxey , Carl Hugo Naylor , Kevin P. O'Brien
IPC: H01L29/775 , H01L21/762
Abstract: A transition metal dichalcogenide (TMD) monolayer grown on a growth substrate is directly transferred to a target substrate. Eliminating the use of a carrier wafer in the TMD monolayer transfer process reduces the number of transfers endured by the TMD monolayer from two to one, which can result in less damage to the TMD monolayer. After a TMD monolayer is grown on a growth layer, a protective layer is formed on the TMD monolayer. The protective layer is bonded to the target substrate by a diffusion bonding layer. The direct transfer of TMD monolayers can be repeated to create a stack of TMD monolayers. A stack of TMD monolayers can be used in a field effect transistor, such as a nanoribbon field effect transistor.
-
12.
公开(公告)号:US20240222485A1
公开(公告)日:2024-07-04
申请号:US18091209
申请日:2022-12-29
Applicant: Intel Corporation
Inventor: Mahmut Sami Kavrik , Tristan Tronic , Chelsey Dorow , Kevin O?Brien , Uygar Avci , Carl H. Naylor , Chia-Ching Lin , Dominique Adams , Matthew Metz , Ande Kitamura , Scott B. Clendenning
IPC: H01L29/775 , H01L27/088 , H01L29/06 , H01L29/26 , H01L29/423 , H01L29/66
CPC classification number: H01L29/775 , H01L27/088 , H01L29/0673 , H01L29/26 , H01L29/42392 , H01L29/66969
Abstract: A transistor structure includes a stack of nanoribbons coupling source and drain terminals. The nanoribbons may each include a pair of crystalline interface layers and a channel layer between the interface layers. The channel layers may be a molecular monolayer, including a metal and a chalcogen, with a thickness of less than 1 nm. The channel layers may be substantially monocrystalline, and the interface layers may be lattice matched to the channel layers. The channel layers may be epitaxially grown over the lattice-matched interface layers. The crystalline interface layers may be grown over sacrificial layers when forming the stack of nanoribbons.
-
13.
公开(公告)号:US20250113573A1
公开(公告)日:2025-04-03
申请号:US18478691
申请日:2023-09-29
Applicant: Intel Corporation
Inventor: Andrey Vyatskikh , Paul B. Fischer , Uygar E. Avci , Chelsey Dorow , Mahmut Sami Kavrik , Karthik Krishnaswamy , Chia-Ching Lin , Jennifer Lux , Kirby Maxey , Carl Hugo Naylor , Kevin P. O'Brien , Justin R. Weber
IPC: H01L29/18 , H01L21/02 , H01L27/092 , H01L29/06 , H01L29/423 , H01L29/66 , H01L29/778 , H01L29/78
Abstract: A low strain transfer protective layer is formed on a transition metal dichalcogenide (TMD) monolayer to enable the transfer of the TMD monolayer from a growth substrate to a target substrate with little or no strain-induced damage to the TMD monolayer. Transfer of a TMD monolayer from a growth substrate to a target substrate comprises two transfers, a first transfer from the growth substrate to a carrier wafer and a second transfer from the carrier wafer to the target substrate. Transfer of the TMD monolayer from the growth substrate to the carrier wafer comprises mechanically lifting off the TMD monolayer from the growth substrate. The low strain transfer protective layer can limit the amount of strain transferred from the carrier wafer to the TMD monolayer during lift-off. The carrier wafer and protective layer are separated from the TMD monolayer after attachment of the TMD monolayer to the target substrate.
-
公开(公告)号:US20240222483A1
公开(公告)日:2024-07-04
申请号:US18091211
申请日:2022-12-29
Applicant: Intel Corporation
Inventor: Carl H. Naylor , Kirby Maxey , Kevin O’Brien , Chelsey Dorow , Sudarat Lee , Ashish Verma Penumatcha , Uygar Avci , Matthew Metz , Scott B. Clendenning , Chia-Ching Lin , Ande Kitamura , Mahmut Sami Kavrik
IPC: H01L29/76 , H01L21/02 , H01L29/06 , H01L29/24 , H01L29/423 , H01L29/66 , H01L29/775
CPC classification number: H01L29/7606 , H01L21/02568 , H01L21/0257 , H01L21/02603 , H01L21/0262 , H01L21/02645 , H01L29/0673 , H01L29/24 , H01L29/42392 , H01L29/66969 , H01L29/775
Abstract: A transistor structure includes a stack of nanoribbons spanning between terminals of the transistor. Ends of the nanoribbons include silicon, and channel regions between the ends include a transition metal and a chalcogen. A gate structure over the channel regions includes an insulator between the channel regions and a gate electrode material. Contact regions may be formed by modifying portions of the channel regions by adding a dopant to, or altering the crystal structure of, the channel regions. The transistor structure may be in an integrated circuit device.
-
公开(公告)号:US20240222461A1
公开(公告)日:2024-07-04
申请号:US18091201
申请日:2022-12-29
Applicant: Intel Corporation
Inventor: Ande Kitamura , Carl H. Naylor , Kevin O'Brien , Kirby Maxey , Chelsey Dorow , Ashish Verma Penumatcha , Scott B. Clendenning , Uygar Avci , Matthew Metz , Chia-Ching Lin , Sudarat Lee , Mahmut Sami Kavrik , Carly Rogan , Paul Gutwin
IPC: H01L29/45 , H01L21/02 , H01L21/443 , H01L23/528 , H01L29/06 , H01L29/24 , H01L29/417 , H01L29/423 , H01L29/66 , H01L29/76 , H01L29/775
CPC classification number: H01L29/45 , H01L21/02568 , H01L21/443 , H01L23/5286 , H01L29/0673 , H01L29/24 , H01L29/41733 , H01L29/42392 , H01L29/66969 , H01L29/7606 , H01L29/775
Abstract: A transistor in an integrated circuit (IC) die includes source and drain terminals having a bulk material enclosed by a liner material. A nanoribbon channel region couples the source and drain terminals. The nanoribbon may include a transition metal and a chalcogen. The liner material may contact ends and upper and lower surfaces of the nanoribbon. The transistor may be in an interconnect layer. The source and drain terminals may be formed by conformally depositing the liner material over the ends of the nanoribbon and in voids opened in the IC die.
-
公开(公告)号:US20240222126A1
公开(公告)日:2024-07-04
申请号:US18147644
申请日:2022-12-28
Applicant: Intel Corporation
Inventor: Mahmut Sami Kavrik , Uygar Avci , Brandon Holybee , Jennifer Lux , Kevin O'Brien , Shida Tan
IPC: H01L21/266 , H01L21/265
CPC classification number: H01L21/266 , H01L21/26506
Abstract: This disclosure describes systems, apparatus, methods, and devices related to fabrication using ion beams. The device may apply an ion beam targeted to at least one of one or more regions of a top layer, a metal layer placed on top of the top layer, or one or more ion stoppers placed on top of the top layer, wherein the ion beam is tuned using a predetermined energy range or a dosing level of ions to modify the material characteristics of the 2D material at the one or more regions of the top layer. The device may create a bond between the one or more 2D and metal layers to the one or more regions of the top layer where the material characteristics of the 2D material have been modified due to the impinging ion beam.
-
公开(公告)号:US20240222113A1
公开(公告)日:2024-07-04
申请号:US18091279
申请日:2022-12-29
Applicant: Intel Corporation
Inventor: Carl H. Naylor , Kirby Maxey , Kevin OBrien , Chelsey Dorow , Sudarat Lee , Ashish Verma Penumatcha , Uygar Avci , Matthew Metz , Scott B. Clendenning , Mahmut Sami Kavrik , Chia-Ching Lin , Ande Kitamura
CPC classification number: H01L21/02568 , H01L21/02598 , H01L21/02639 , H01L21/045 , H01L23/3171
Abstract: Integrated circuit (IC) structures comprising transistors with metal chalcogenide channel material synthesized on a workpiece comprising a Group IV crystal. Prior to synthesis of the metal chalcogenide material, a passivation material is formed over the Group IV crystal to limit exposure of the substrate to the growth precursor gas(es) and thereby reduce a quantity of chalcogen species subsequently degassed from the workpiece. The passivation material may be applied to the front side, back side, and/or edge of a workpiece. The passivation material may be sacrificial or retained as a permanent feature of an IC structure. The passivation material may be advantageously amorphous and/or a compound comprising at least one of a metal or nitrogen that is good diffusion barrier and thermally stable at the metal chalcogenide synthesis temperatures.
-
公开(公告)号:US20240222073A1
公开(公告)日:2024-07-04
申请号:US18147636
申请日:2022-12-28
Applicant: Intel Corporation
Inventor: Shida Tan , Uygar Avci , Brandon Holybee , Kirby Maxey , Kevin O'Brien , Mahmut Sami Kavrik
IPC: H01J37/317 , H01L21/027 , H01L21/033 , H01L21/311 , H01L21/3213
CPC classification number: H01J37/3174 , H01L21/0279 , H01L21/0332 , H01L21/0337 , H01L21/31122 , H01L21/31138 , H01L21/31144 , H01L21/32135 , H01L21/32139 , H01J2237/3174 , H01J2237/31755
Abstract: This disclosure describes systems, apparatus, methods, and devices related to ion beams fabrication. A device may overlay a wafer assembly of one or more layers with a top layer comprised of a material having 2D material characteristics. The device may be fabricated by applying an ion beam targeted to at least one of one or more regions of the top layer or a resist layer placed on top of the top layer, wherein the ion beam is tuned using a predetermined energy range or a dosing level of ions to modify material characteristics of the resist layer or to perform milling of the top layer or other layers of the one or more layers of the wafer assembly.
-
-
-
-
-
-
-