摘要:
A semiconductor device including a germanium containing substrate including a gate structure on a channel region of the semiconductor substrate. The gate structure may include a silicon oxide layer that is in direct contact with an upper surface of the germanium containing substrate, at least one high-k gate dielectric layer in direct contact with the silicon oxide layer, and at least one gate conductor in direct contact with the high-k gate dielectric layer. The interface between the silicon oxide layer and the upper surface of the germanium containing substrate is substantially free of germanium oxide. A source region and a drain region may be present on opposing sides of the channel region.
摘要:
Replacement gate work function material stacks are provided, which provides a work function about the energy level of the conduction band of silicon. After removal of a disposable gate stack, a gate dielectric layer is formed in a gate cavity. A metallic compound layer including a metal and a non-metal element is deposited directly on the gate dielectric layer. At least one barrier layer and a conductive material layer is deposited and planarized to fill the gate cavity. The metallic compound layer includes a material having a work function about 4.4 eV or less, and can include a material selected from tantalum carbide and a hafnium-silicon alloy. Thus, the metallic compound layer can provide a work function that enhances the performance of an n-type field effect transistor employing a silicon channel.
摘要:
At least one layer including a scavenging material and a dielectric material is deposited over a gate stack, and is subsequently anisotropically etched to form a oxygen-scavenging-material-including gate spacer. The oxygen-scavenging-material-including gate spacer can be a scavenging-nanoparticle-including gate spacer or a scavenging-island-including gate spacer. The scavenging material is distributed within the oxygen-scavenging-material-including gate spacer in a manner that prevents an electrical short between a gate electrode and a semiconductor material underlying a gate dielectric. The scavenging material actively scavenges oxygen that diffuses toward the gate dielectric from above, or from the outside of, a dielectric gate spacer that can be formed around the oxygen-scavenging-material-including gate spacer.
摘要:
A semiconductor device including a germanium containing substrate including a gate structure on a channel region of the semiconductor substrate. The gate structure may include a silicon oxide layer that is in direct contact with an upper surface of the germanium containing substrate, at least one high-k gate dielectric layer in direct contact with the silicon oxide layer, and at least one gate conductor in direct contact with the high-k gate dielectric layer. The interface between the silicon oxide layer and the upper surface of the germanium containing substrate is substantially free of germanium oxide. A source region and a drain region may be present on opposing sides of the channel region.
摘要:
A high dielectric constant (high-k) gate dielectric for a field effect transistor (FET) and a high-k tunnel dielectric for a non-volatile random access memory (NVRAM) device are simultaneously formed on a semiconductor substrate. A stack of at least one conductive material layer, a control gate dielectric layer, and a disposable material layer is subsequently deposited and lithographically patterned. A planarization dielectric layer is deposited and patterned, and disposable material portions are removed. A remaining portion of the control gate dielectric layer is preserved in the NVRAM device region, but is removed in the FET region. A conductive material is deposited in gate cavities to provide a control gate for the NVRAM device and a gate portion for the FET. Alternately, the control gate dielectric layer may replaced with a high-k control gate dielectric in the NVRAM device region.
摘要:
A stack of a barrier metal layer and a first-type work function metal layer is deposited in replacement metal gate schemes. The barrier metal layer can be deposited directly on the gate dielectric layer. The first-type work function metal layer is patterned to be present only in regions of a first type field effect transistor. A second-type work function metal layer is deposited directly on the barrier metal layer in the regions of a second type field effect transistor. Alternately, the first-type work function layer can be deposited directly on the gate dielectric layer. The barrier metal layer is patterned to be present only in regions of a first type field effect transistor. A second-type work function metal layer is deposited directly on the gate dielectric layer in the regions of the second type field effect transistor. A conductive material fill and planarization form dual work function replacement gate structures.
摘要:
A method of manufacturing a semiconductor structure, and the resultant structure. The method includes forming an oxide layer above a substrate. The method includes forming a metal layer above the oxide layer. The method includes forming a first capping layer above the metal layer. A material forming the first capping layer may be titanium oxide, or titanium oxynitride. The method includes annealing the semiconductor structure. Annealing the semiconductor structure may result in diffusing a metal from the metal layer into the oxide layer.
摘要:
A surface of a semiconductor-containing dielectric material/oxynitride/nitride is treated with a basic solution in order to provide hydroxyl group termination of the surface. A dielectric metal oxide is subsequently deposited by atomic layer deposition. The hydroxyl group termination provides a uniform surface condition that facilitates nucleation and deposition of the dielectric metal oxide, and reduces interfacial defects between the oxide and the dielectric metal oxide. Further, treatment with the basic solution removes more oxide from a surface of a silicon germanium alloy with a greater atomic concentration of germanium, thereby reducing a differential in the total thickness of the combination of the oxide and the dielectric metal oxide across surfaces with different germanium concentrations.
摘要:
The present invention relates generally to semiconductor devices and more particularly, to a structure and method of forming a high-mobility fin field effect transistor (finFET) fin in a silicon semiconductor on insulator (SOI) substrate by trapping crystalline lattice dislocations that occur during epitaxial growth in a recess formed in a semiconductor layer. The crystalline lattice dislocations may remain trapped below a thin isolation layer, thereby reducing device thickness and the need for high-aspect ratio etching and fin formation.
摘要:
Embodiments of the present invention provide a finFET and method of fabrication to achieve advantages of both merged and unmerged fins. A first step of epitaxy is performed with either partial diamond or full diamond growth. This is followed by a second step of deposition of a semiconductor cap region on the finFET source/drain area using a directional deposition process, followed by an anneal to perform Solid Phase Epitaxy or poly recrystalization. As a result, the fins remain unmerged, but the epitaxial volume is increased to provide reduced contact resistance. Embodiments of the present invention allow a narrower fin pitch, which enables increased circuit density on an integrated circuit.