Abstract:
In an electronic device, and a method of manufacturing the same, the electronic device includes a first substrate, a first lower capacitor on the first substrate, a first lower switching element on the first lower capacitor, and a second substrate on the first lower switching element. The electronic device may further include a second lower switching element which is isolated from the first lower capacitor, and an upper capacitor on the second substrate, the lower electrode of the upper capacitor being connected to the second lower switching element.
Abstract:
An electron-beam focusing apparatus for controlling a path of electron beams emitted from an electron-beam emitter in an electron-beam projection lithography (EPL) system includes top and bottom magnets for creating a magnetic field within a vacuum chamber, the top and bottom magnets disposed above and below the vacuum chamber into which a wafer is loaded, respectively; upper and lower pole pieces magnetically contacting the top and bottom magnets, respectively, the upper and lower pole pieces penetrating a top wall and a bottom wall of the vacuum chamber, respectively; and upper and lower projections having a circular shape, extending outwardly from facing surfaces of the upper and lower pole pieces, respectively.
Abstract:
Provided are nonvolatile memory transistors and devices including the nonvolatile memory transistors. A nonvolatile memory transistor may include a channel element, a gate electrode corresponding to the channel element, a gate insulation layer between the channel element and the gate electrode, an ionic species moving layer between the gate insulation layer and the gate electrode, and a source and a drain separated from each other with respect to the channel element. A motion of an ionic species at the ionic species moving layer occurs according to a voltage applied to the gate electrode. A threshold voltage changes according to the motion of the ionic species. The nonvolatile memory transistor has a multi-level characteristic.
Abstract:
Semiconductor devices including variable resistance materials and methods of operating the semiconductor devices. The semiconductor devices use variable resistance materials with resistances that vary according to applied voltages as channel layers.
Abstract:
A color printing paper includes a substrate having a printing region and a plurality of photonic crystal patterns formed on the printing region. The plurality of photonic crystal layer patterns have different respective optical reflection characteristics. The printing method includes selecting pixels including a plurality of photonic crystal layer patterns that express at least one of a red color, a green color, and a blue color, and changing optical reflection characteristics of at least a portion of the plurality of photonic crystal layer patterns of the selected pixels.
Abstract:
A storage device may include a storage unit that stores data transmitted via a plurality of first wires; and a security control unit that controls connection between each of a plurality of second wires connected to an external device and each of the plurality of first wires by programming a plurality of switching devices according to an encryption key.
Abstract:
Example embodiments may provide data storage devices using movement of a magnetic domain wall and/or a method of operating magnetic domain data storage devices. The data storage device may include a first magnetic layer for writing data having two magnetic domains magnetized in different directions, a second magnetic layer for storing data at a side of the first magnetic layer, a data recording device connected to the first magnetic layer and the second magnetic layer, and a plurality of reading heads configured to read the second magnetic layer. The data storage device may store a larger amount of data without requiring moving mechanical systems.
Abstract:
A method of manufacturing a nanochannel-array and a method of fabricating a nanodot using the nanochannel-array are provided. The nanochannel-array manufacturing method includes: performing first anodizing to form a first alumina layer having a channel array formed by a plurality of cavities on an aluminum substrate; etching the first alumina layer to a predetermined depth and forming a plurality of concave portions on the aluminum substrate, wherein each concave portion corresponds to the bottom of each channel of the first alumina layer; and performing second anodizing to form a second alumina layer having an array of a plurality of channels corresponding to the plurality of concave portions on the aluminum substrate. The array manufacturing method makes it possible to obtain finely ordered cavities and form nanoscale dots using the cavities.
Abstract:
A memory device may include a switching device and a storage node coupled with the switching device. The storage node may include a first electrode, a second electrode, a data storage layer and at least one contact layer. The data storage layer may be disposed between the first electrode and the second electrode and may include a transition metal oxide or aluminum oxide. The at least one contact layer may be disposed at least one of above or below the data storage layer and may include a conductive metal oxide.
Abstract:
A nonvolatile semiconductor memory device and a method of fabricating the same are provided. The nonvolatile memory device may include a switching device and a storage node connected to the switching device. The storage node may comprise a lower electrode, a data storing layer, and an upper electrode. The data storing layer may include a first region where a current path is formed at a first voltage, and a second region surrounding the first region where a current path is formed at a second voltage, greater than the first voltage. The first region may be positioned to contact the upper electrode and the lower electrode.