Abstract:
A package comprising a carrier, an electronic component mounted on the carrier, and an identifier indicative of an origin of the package and being formed on and/or in the carrier is disclosed.
Abstract:
In various embodiments, a chip package is provided. The chip package may include a chip, a metal contact structure including a non-noble metal and electrically contacting the chip, a packaging material, and a protective layer including or essentially consisting of a portion formed at an interface between a portion of the metal contact structure and the packaging material, wherein the protective layer may include a noble metal, wherein the portion of the protective layer may include a plurality of regions free from the noble metal, and wherein the regions free from the noble metal may provide an interface between the packaging material and the non-noble metal of the metal contact structure.
Abstract:
An ultrasonic touch sensor is proposed for attachment to a casing, having a semiconductor chip including a substrate side and a component side, the semiconductor chip including an ultrasonic transducer element and the ultrasonic transducer element being arranged on the component side, having an acoustic coupling medium covering the semiconductor chip at least in the region of the ultrasonic transducer element, having electrical contact elements for controlling the ultrasonic transducer element, and the electrical contact elements being arranged on the component side of the semiconductor chip.
Abstract:
A package is disclosed. In one example, the package comprises a carrier, an electronic component mounted on the carrier, and an encapsulant encapsulating at least part of the electronic component and only part of the carrier so that another exposed part of the carrier is exposed with regard to the encapsulant. The exposed part of the carrier comprises an electric connection structure and a corrosion protection structure. One of the electric connection structure and the corrosion protection structure is selectively formed on only a sub-portion of the other one of the electric connection structure and the corrosion protection structure outside of the encapsulant.
Abstract:
A method of forming an electrical contact and a method of forming a chip package are provided. The methods may include arranging a metal contact structure including a non-noble metal and electrically contacting the chip, arranging a packaging material, and a protective layer including or essentially consisting of a portion formed at an interface between a portion of the metal contact structure and the packaging material, wherein the protective layer may include a noble metal, wherein the portion of the protective layer may include a plurality of regions free from the noble metal, and wherein the regions free from the noble metal may provide an interface between the packaging material and the non-noble metal of the metal contact structure.
Abstract:
A semiconductor sensor device includes a substrate including a first main face and a second main face opposite the first main face, a semiconductor element including a sensing region, the semiconductor element on the first main face of the substrate and being electrically coupled to the substrate, a lid on the first main face of the substrate and forming a cavity, wherein the semiconductor element is in the cavity, and a vapor deposited dielectric coating covering the semiconductor element and the first main face of the substrate, the vapor deposited dielectric coating having an opening over the sensing region, wherein the second main face of the substrate is at least partially free of the vapor deposited dielectric layer.
Abstract:
In various embodiments, a chip package is provided. The chip package may include a chip, a metal contact structure including a non-noble metal and electrically contacting the chip, a packaging material, and a protective layer including or essentially consisting of a portion formed at an interface between a portion of the metal contact structure and the packaging material, wherein the protective layer may include a noble metal, wherein the portion of the protective layer may include a plurality of regions free from the noble metal, and wherein the regions free from the noble metal may provide an interface between the packaging material and the non-noble metal of the metal contact structure.
Abstract:
An apparatus for determining a state of a rechargeable battery or of a battery has a sensor device and an evaluation device. The sensor device brings about an interaction between an optical signal and a part of the rechargeable battery or of the battery, which part indicates optically acquirable information about a state of the rechargeable battery or of the battery, and detects an optical signal caused by the interaction. The sensor device furthermore provides a detection signal having information about the detected optical signal. The evaluation device determines information about a state of the rechargeable battery or of the battery on the basis of the information of the detection signal. Furthermore, the evaluation device provides a state signal having the information about the determined state.
Abstract:
A sensor arrangement according to an embodiment comprises a transmitter to be arranged inside a battery cell and to transmit a signal based on at least one sensed operational parameter of the battery cell wirelessly.
Abstract:
An apparatus for determining a state of a rechargeable battery or of a battery has a sensor device and an evaluation device. The sensor device brings about an interaction between an optical signal and a part of the rechargeable battery or of the battery, which part indicates optically acquirable information about a state of the rechargeable battery or of the battery, and detects an optical signal caused by the interaction. The sensor device furthermore provides a detection signal having information about the detected optical signal. The evaluation device determines information about a state of the rechargeable battery or of the battery on the basis of the information of the detection signal. Furthermore, the evaluation device provides a state signal having the information about the determined state.