Abstract:
In an embodiment, a defective memory block is replaced with a non-defective memory block, and a voltage-delay correction is applied to the non-defective memory block that replaces the defective memory block based on the actual location of the non-defective memory block.
Abstract:
The present disclosure includes methods, devices, modules, and systems for programming memory cells. One method embodiment includes storing charges corresponding to a data state that represents an integer number of bits in a set of memory cells. The method also includes storing a charge in a cell of the set, where the charge corresponds to a programmed state, where the programmed state represents a fractional number of bits, and where the programmed state denotes a digit of the data state as expressed by a number in base N, where N is equal to 2B, rounded up to an integer, and where B is equal to the fractional number of bits represented by the programmed state.
Abstract:
The present disclosure includes apparatuses and methods for power consumption control. A number of embodiments include determining power consumption information for each phase in a combination of phases of a command, and authorizing execution of at least one of the phases in the combination based, at least partially, on the power consumption information determined for the at least one of the phases.
Abstract:
The present disclosure includes methods, devices, and systems for adjusting sensing voltages in devices. One or more embodiments include memory cells, and a controller configured to perform a sense operation on the memory cells using a sensing voltage to determine a quantity of the memory cells having a threshold voltage (Vt) greater than the sensing voltage and adjust a sensing voltage used to determine a state of the memory cells based, at least partially, on the determined quantity of memory cells.
Abstract:
Methods for memory cell coupling compensation and apparatuses configured to perform the same are described. One or more methods for memory cell coupling compensation includes determining a state of a memory cell using a voltage that is changed in accordance with a first memory cell coupling compensation voltage, performing an error check on the state of the memory cell, and determining the state of the memory cell using a voltage that is changed in accordance with a second memory cell coupling compensation voltage in response to the error check failing.
Abstract:
Methods of correcting data in a memory, and memories adapted to correct data, include prioritizing error correction of the read data in response to locations and likely states of known bad or questionable data positions of a segment of a memory array selected for reading.
Abstract:
A memory device has a plurality of individually erasable blocks of memory cells and a controller configured to configure a first block of memory cells of the plurality of blocks of memory cells in a first configuration comprising one or more groups of overhead data memory cells, to configure a second block of memory cells of the plurality of blocks of memory cells in a second configuration comprising a group of user data memory cells and a group of overhead data memory cells, and to configure a third block of memory cells of the plurality of blocks of memory cells in a third configuration comprising only a group of user data memory cells. The group of overhead data memory cells of the second block of memory cells has a different storage capacity than at least one group of overhead data memory cells of the one or more groups of overhead data memory cells of the first block of memory cells.
Abstract:
The present disclosure includes apparatuses and methods related to stopping criteria for layered iterative error correction. A number of methods can include receiving a codeword with an error correction circuit, iteratively error correcting the codeword with the error correction circuit including parity checking the codeword on a layer-by-layer basis and updating the codeword after each layer. Methods can include stopping the iterative error correction in response to a parity check being correct for a particular layer.
Abstract:
The present disclosure includes methods, devices, and systems for state change in systems having devices coupled in a chained configuration. A number of embodiments include a host and a number of devices coupled to the host in a chained configuration. The chained configuration includes at least one device that is not directly coupled to the host. The at least one device that is not directly coupled to the host is configured to change from a first communication state to a second communication state responsive to receipt of a command from the host.
Abstract:
Memory devices and systems having an array of memory cells arranged in a plurality of sectors and a plurality of ECC coverage areas, and control circuitry configured to adjust a size of one or more of the ECC coverage areas.