Abstract:
A vertical probe device includes a lower die having engaging holes and needle holes, a positioning film having limiting holes and needle holes, probe needles inserted through the needle holes, and supporters having at least an upper stopping surface and at least a lower stopping surface for moveably limiting the positioning film therebetween. Each supporter has a head, a neck passing through the limiting hole and having a length longer than the thickness of the positioning film, a body, and a tail inserted into the engaging hole, which are connected in order, and at least one of the upper and lower stopping surfaces. The supporters can prevent the positioning film from being lifted and flipped over and enables the positioning film to move so that the probe needles are reliable.
Abstract:
A wafer testing probe card includes a printed circuit board, a flexible circuit board, an elastic piece, and a probe unit. The flexible circuit board is electrically connected to the printed circuit board. The elastic piece is disposed between the printed circuit board and the flexible circuit board. The probe unit includes a probe head and a plurality of probes. The probe head is fixed on the printed circuit board and has a plurality of through holes. The probes respectively pass through the through holes and move up and down relative to the probe head.
Abstract:
A probe device includes a spring probe and a probe seat. The spring probe includes a needle and a spring sleeve sleeved onto the needle and provided with at least one spring section and at least one non-spring section. The probe seat includes a plurality of dies stacked together and at least one guiding hole through which the spring probe is inserted. An upper edge and a lower edge of the guiding hole of the probe seat are arranged corresponding in position to the non-spring section of the spring sleeve. As a result, the spring probe is prevented from getting jammed due to the contact of the spring section of the spring sleeve with the upper and lower edges of the guiding hole.
Abstract:
An assembly method of direct-docking probing device is provided. First, a space transforming plate made by back-end-of-line semiconductor manufacturing process is provided, so the thickness of the space transforming plate is predetermined by the client of probe card manufacturer. Then a reinforcing plate in which a plurality of circuits disposed is provided, which has larger mechanical strength than the space transforming plate. After that the reinforcing plate and the space transforming plate are joined and electrically connected by a plurality of solders so as to form a space transformer. Then, a conductive elastic member and a probe interface board are provided. Thereafter, the space transformer and the conductive elastic member are mounted on the probe interface board. After that, at least one vertical probe assembly having a plurality of vertical probes is mounted on the space transforming plate, and the vertical probes is electrically connected with the space transforming plate.
Abstract:
A positioner and a probe head of a probe card are provided. The positioner has a main opening, a first sub-opening, a second sub-opening, a third sub-opening, a fourth sub-opening, a first positioning portion, a second positioning portion, a first elastic portion and a second elastic portion. The first sub-opening, the second sub-opening, the third sub-opening, and the fourth sub-opening are sequentially arranged at the periphery of the main opening and are communicated to the main opening. A stiffness of the first positioning portion and a stiffness of the second positioning portion are higher than a stiffness of the first elastic portion and a stiffness of the second elastic portion.
Abstract:
A probe device includes a spring probe having a spring sleeve with at least a spring section and a connection segment fixed to a needle and having a convex portion protruding over an outer cylinder surface of the spring section, and a probe seat having stacked dies and at least a guiding hole through which the probe is inserted. The dies includes a lower die, a supporting die above the lower die and a non-circular supporting hole at the supporting die. The distance between a supporting surface and a center of the supporting hole is greater than the radius of the outer cylinder surface and smaller than the distance between a guiding surface of the supporting hole and the center, which is greater than the maximum distance between the convex portion and a needle center, thereby preventing the probe receiving external force from exceeding deflection and bending.
Abstract:
A spring probe includes a needle, a spring sleeve sleeved onto the needle, and a protrusion. The spring sleeve has upper and lower non-spring sections, and at least a spring section therebetween. The needle has a bottom end portion protruding out from the lower non-spring section, and a top end portion located in the upper non-spring section. The protrusion is located at one of the top end portion and the upper non-spring section. The needle is movable relative to the upper non-spring section from an initial position to a connected position where the upper non-spring section is electrically connected with the needle through the protrusion when receiving an external force. As a result, the spring probe effectively prevents signals from being transmitted through the spring section, thereby improving stability of signal transmission and preventing the spring section from fracture.
Abstract:
An alignment adjusting mechanism for a probe card includes a frame, a substrate and positioning screws. The frame has an opening, an inner periphery wall surrounding around the opening, and an outer periphery wall corresponding to the inner periphery wall. The substrate is disposed in the opening and supported by a support flange extending from the inner periphery wall toward a center of the opening. The frame is provided with a plurality of positioning threaded holes each extending from the outer periphery wall to the inner periphery wall in communication with the opening. Each positioning screw is threaded into one of the positioning threaded holes and has an end stopped at a lateral side of the substrate. By turning the positioning screws, the planimetric position of the substrate on an imaginary plane is adjustable.
Abstract:
The probe card includes a substrate, at least two IC boards, and a plurality of probe pads. The IC boards are located on the substrate, and a predetermined distance is formed between the IC boards. Each of the IC boards has a plurality of lead connection points. The probe pads are plated on the IC boards, and are respectively connected to the lead connection points to cover the lead connection points. A probe area is surrounded by the probe pads on each of the IC boards. The probe pads are used to abut against plural probes.