Abstract:
An identifier value stored within a programmable register of a memory device is compared with a selector address received, together with a memory access command, via a signaling interface having at least one I/O node coupled to a bidirectional signaling line. On-die termination circuitry is transitioned between first and second states or maintained in one or the other of the first and second states based, at least in part, on whether the selector address matches the identifier value, with transition to the first state including switchably coupling a first termination resistance between the I/O node and a supply voltage line.
Abstract:
On-die termination circuitry within a non-volatile memory device applies a first termination resistance to an I/O node in response to a data storage command indicating that a data signal conveyed on a bidirectional signaling line is to be received within the non-volatile memory device via the I/O node, and applies a second termination resistance to the I/O node in response to information indicating that another memory device is to output a data signal onto the bidirectional signaling line.
Abstract:
In a non-volatile memory device having an array of non-volatile storage elements, control information received via one or more control input nodes indicates, at different times, that (i) data signals representative of data to be stored within the array of non-volatile storage elements are to be received via a plurality of input/output (I/O) nodes of the non-volatile memory device, and (ii) data signals representative of data read from the array of non-volatile storage elements are to be output via the plurality of I/O nodes. First termination elements are switchably coupled to and decoupled from the I/O nodes based at least in part on the control information, and second termination elements are switchably coupled to and decoupled from the one or more control input nodes based at least in part on the control information.
Abstract:
On-die termination circuitry within a non-volatile memory device applies a first termination resistance to an I/O node in response to a data storage command indicating that a data signal conveyed on a bidirectional signaling line is to be received within the non-volatile memory device via the I/O node, and applies a second termination resistance to the I/O node in response to information indicating that another memory device is to output a data signal onto the bidirectional signaling line.
Abstract:
Components of a memory system, such as a memory controller and a memory device, that reduce delay in exiting self-refresh mode by controlling the refresh timing of the memory device. The memory device includes a memory core. An interface circuit of the memory device receives an external refresh signal indicating an intermittent refresh event. A refresh circuit of the memory device generates an internal refresh signal indicating an internal refresh event of the memory device. A refresh control circuit of the memory device performs a refresh operation on a portion of the memory core responsive to the internal refresh event, at a time relative to the intermittent refresh event indicated by the external refresh signal.
Abstract:
Multiple devices, including a first device and a second device, have operational circuitry and opposing first and second surfaces. First and second electrical contacts are formed at the first surface, while a third electrical contact is formed at the second surface opposite the first electrical contact. The first electrical contact is electrically connected to the operational circuitry, and the second electrical contact is electrically connected to the third electrical contact. The first device and the second device are subsequently stacked such that the first surface of the second device is located adjacent the second surface of the first device such that the first electrical contact of the second device is aligned with the third electrical contact of the first device. The first electrical contact of the second device is electrically connected to the third electrical contact of the first device.
Abstract:
Row activation operations within a memory component are carried out with respect to subrows instead of complete storage rows to reduce power consumption. Further, instead of activating subrows in response to row commands, subrow activation operations are deferred until receipt of column commands that specify the column operation to be performed and the subrow to be activated.
Abstract:
A memory controller includes a clock generator to generate a first clock signal and a timing circuit to generate a second clock signal from the first clock signal. The second clock signal times communications with any of a plurality of memory devices in respective ranks, including a first memory device in a first rank and a second memory device in a second rank. The timing circuit is configured to adjust a phase of the first clock signal, when the memory controller is communicating with the second memory device, based on calibration data associated with the second memory device and timing adjustment data associated with feedback from at least the first memory device.
Abstract:
A memory controller having a time-staggered request signal output. A first timing signal is generated while a second timing signal is generated having a first phase difference relative to the first timing signal. An address value is transmitted in response to the first timing signal and a control value is transmitted in response to the second timing signal, the address value and control value constituting portions of a first memory access request.
Abstract:
Row activation operations within a memory component are carried out with respect to subrows instead of complete storage rows to reduce power consumption. Further, instead of activating subrows in response to row commands, subrow activation operations are deferred until receipt of column commands that specify the column operation to be performed and the subrow to be activated.