Abstract:
A clock generation circuit includes a delay line, a delay modeling block, a phase detection block, a multi-update signal generation block, and a delay line. The delay line delays an input clock and generates a delayed clock. The delay modeling block delays the delayed clock by a modeled delay value and generates a feedback clock. The phase detection block compares phases of the input clock and the feedback clock and generates phase information, and quantizes a phase difference between the input clock and the feedback clock and generates phase codes. The multi-update signal generation block generates a multi-update signal in response to the phase codes. The delay line control block changes a delay amount of the delay line in response to the multi-update signal and the phase information.
Abstract:
An address distribution apparatus includes an address distributor. The address distributor distributes addresses of a plurality of memory cells in a memory device to prevent at least two successive write operations from being applied to at least two adjacent memory cells sharing any one of a plurality of word lines or any one of a plurality of bit lines among the plurality of memory cells. The at least two write operations are performed in response to write requests outputted from a host, respectively.
Abstract:
An all digital phase locked loop (ADPLL) includes an integer part phase processing circuit that outputs an integer part frequency signal using a first value and a second value. The first value is obtained by counting edges of one of a plurality of output clock signals. The second value indicates current edge position information on an edge position of an external reference clock signal with respect to the plurality of output clock signals. The ADPLL further includes a fraction part phase processing circuit that selects two adjacent output clock signals of the plurality of output clock signals according to a prediction selection signal and that generates a fraction part frequency signal using the fraction part phase signal, the prediction selection signal being generated according to a fraction part phase signal indicating fraction part phase information and a signal indicating the current edge position information.
Abstract:
A semiconductor system includes a host and a media controller. The host may generate first host parities from first host data based on an error check matrix. The media controller may include a first input/output (I/O) circuit and a second I/O circuit. The media controller may generate first media data and first media parities based on the first host data and the first host parities. The first I/O circuit may generate, based on the error check matrix, first internal data by correcting errors in the first host data using the first host parities. The second I/O circuit may generate the first media data and the first media parities from the first internal data.
Abstract:
A semiconductor device may be provided. The semiconductor device may be configured to shift storage positions of data and error information on the data to store the data into shifted storage positions based on the address signals having a certain combination being inputted a predetermined number of times.
Abstract:
In an embodiment of the present disclosure, a memory module may be provided. In an embodiment of the present disclosure, a system may be provided. In an embodiment of the present disclosure, an operation of a system and memory module may be provided. The memory module may include a plurality of ranks in which a defragmentation operation of a memory is performed based on entrance of a low-power operation mode, and a vacant region of the memory is powered off based on entrance of a self-refresh mode after the defragmentation operation is ended. The memory module may include a page table of which data are updated based on an ending of the defragmentation operation of the memory.
Abstract:
A data transmission and reception system may include: a data transmission apparatus configured to generate N Tx signals having discrete levels using N binary data, and output the N Tx signals to N single-ended signal lines, respectively, where N is a natural number equal to or larger than 2; and a data reception apparatus configured to receive the N Tx signals transmitted in parallel through the single-ended signal lines, and restore the N binary data by comparing the received N Tx signals to each other.
Abstract:
A semiconductor device may be provided. The semiconductor device may be configured to shift storage positions of data and error information on the data to store the data into shifted storage positions based on the address signals having a certain combination being inputted a predetermined number of times.
Abstract:
A semiconductor device may be provided. The semiconductor device may be configured to shift storage positions of data and error information on the data to store the data into shifted storage positions based on the address signals having a certain combination being inputted a predetermined number of times.
Abstract:
A memory apparatus and a method of wear-leveling of a memory apparatus may be provided. The memory apparatus may include a memory having a plurality of storage blocks and a plurality of free blocks. The memory apparatus may include a memory controller configured for performing a first global wear-leveling to move data of a first storage block, which is a hot block among the storage blocks, to a first free block among the free blocks. The memory apparatus may include a memory controller configured for remapping a result of a logic operation of a logical page address of each of the pages in the first storage block and a first security refresh key to a physical page address of each of the pages in the first free block.