Abstract:
A row decoder circuit for a phase change non-volatile memory device may include memory cells arranged in a wordlines. The device may be configured to receive a first supply voltage and a second supply voltage higher than the first supply voltage. The row decoder may include a global predecoding stage configured to receive address signals and generate high-voltage decoded address signals in a range of the second supply voltage and a biasing signal with a value based upon an operation. The row decoder may include a row decoder stage coupled to the global predecoding stage. The row decoder stage may include a selection driving unit configured to generate block-address signals based upon the high-voltage decoded address signals and a row-driving unit configured to generate a row-driving signal for biasing the wordlines based upon the block-address signals and the biasing signal.
Abstract:
A non-volatile memory device including an array of memory cells coupled to word lines and a row decoder, which includes a first and a second pull-down stage, which are arranged on opposite sides of the array, and include, respectively, for each word line, a corresponding first pull-down switching circuit and a corresponding second pull-down switching circuit, which are coupled to a first point and a second point, respectively, of the first word line. The row decoder moreover comprises a pull-up stage, which includes, for each word line, a corresponding pull-up switching circuit, which can be electronically controlled in order to: couple the first point to a supply node in the step of deselection of the word line; and decouple the first point from the supply node in the step of selection of the word line.
Abstract:
An embodiment non-volatile memory device includes an array of memory cells, coupled to word lines, and a row decoder including a pull-down stage and a pull-up stage, which includes, for each word line: a corresponding control circuit, which generates a corresponding control signal; and a corresponding pull-up switch circuit, which is controlled via the control signal so as to couple/decouple the word line to/from the supply. The control circuit includes: a current mirror, which injects a current into an internal node; and a series circuit, which couples/decouples the corresponding internal node to/from ground, on the basis of selection/deselection of the corresponding word line so as to cause a decrease/increase in a voltage on the corresponding internal node. Each control signal is a function of the voltage on the corresponding internal node.
Abstract:
An embodiment voltage generation circuit, for a memory having a memory array with a plurality of memory cells coupled to respective wordlines and local bit-lines, each having a storage element and selector element, a bipolar transistor being coupled to the storage element for selective flow of a cell current during reading or verifying operations, and a base terminal of the selector element being coupled to a respective wordline; associated to each bit-line is a biasing transistor having a control terminal, and the circuit generates a cascode voltage for this control terminal; a driver stage is coupled to one end of each wordline. The circuit generates the cascode voltage based on a reference voltage, which is a function of the emulation of a voltage drop on the driver stage, on the wordline, and on the memory cell as a result of a current associated to the corresponding selector element.
Abstract:
A circuit for biasing non-volatile memory cells includes a dummy decoding path between a global bias line and a biasing node, a reference current generator coupled to the dummy decoding path and configured to supply a reference current, a biasing stage configured to set a cell bias voltage on the biasing node, and a compensation stage configured to compensate a current absorption of the biasing stage at the biasing node so that the reference current will flow through the dummy decoding path.
Abstract:
An address decoder, for a non-volatile memory device provided with a memory array having memory cells arranged in word lines (WL) and bit lines (BL), each memory cell being having a memory element and an access element with a MOS transistor for enabling access to the memory element. Source terminals of the MOS transistors of the access elements of the memory cells of a same word line are connected to a respective source line. The address decoder has a row-decoder circuit and a column-decoder circuit, for selecting and biasing the word lines and the bit lines, respectively, of the memory array with row-driving signals (VWL) and column-driving signals (VBL), respectively. The address decoder has a source-decoder circuit for generating source-driving signals (VSL) for biasing the source lines of the memory array, on the basis of the logic combination of the row-driving signals of associated word lines.
Abstract:
A non-volatile memory includes a number of bit lines, a number of source lines, and a number of memory cells of a non-volatile type. Each memory cell is coupled between a respective bit line and a respective source line. One or more discharge lines are coupled to a reference-voltage terminal. A number of controlled switches are coupled between a respective source line and a respective discharge line, which can be selectively driven for connecting the respective source line to the respective discharge line so as to form a conductive path between the respective source line and the reference-voltage terminal.
Abstract:
A level shifter circuit is designed to shift an input signal that switches within a first voltage range to supply an output signal that switches within a second voltage range, higher than the first voltage range. A first inverter stage has an input receiving the input signal and also has an output. A first capacitive element is connected between the output of the first input inverter stage and a first holding node. A latch stage is connected between the first holding node and a second holding node that is coupled to an output terminal, on which the output signal is present. The first input inverter stage is designed to operate in the first voltage range, and the latch stage is designed to operate in the second voltage range.
Abstract:
A non-volatile memory device may be integrated in a chip of semiconductor material. The memory device may include circuitry for receiving a measure instruction for obtaining a numerical measure value of a selected one among a plurality of predefined memory operations of the memory device. The memory device may also include circuitry for enabling the execution of the selected memory operation in response to the measure instruction. The execution of the selected memory operation may generate a corresponding result. The memory device may further include circuitry for providing at least one time signal, different from the corresponding result, relating to the execution of each memory operation, and circuitry for determining the measure value according to the at least one time signal of the selected memory operation.
Abstract:
A phase-change memory device column decoder is divided into two portions that can be governed independently of one another, and the driving signals of the two portions are configured so as to guarantee comparable capacitive loads at the two inputs of a sense amplifier in both of the operations of single-ended reading and double-ended reading. In particular, during single-ended reading, the sense amplifier has a first input that receives a capacitive load corresponding to the direct memory cell selected, and a second input that receives a capacitive load associated to a non-selected complementary memory cell.