Abstract:
A semiconductor light emitting device include an n-type semiconductor layer, an active layer disposed on the n-type semiconductor layer, and a first p-type semiconductor layer disposed on the active layer. The first p-type semiconductor layer has an uneven structure formed on a surface thereof. A second p-type semiconductor layer has an impurity concentration higher than that of the first p-type semiconductor layer. The second p-type semiconductor layer is disposed on the first p-type semiconductor layer and has an uneven structure formed on a surface thereof. A reflective metal layer is formed on the second p-type semiconductor layer.
Abstract:
A semiconductor package includes a first semiconductor chip including a first body portion, a first bonding layer including a first bonding insulating layer, a first redistribution portion including first redistribution layers, a first wiring insulating layer disposed between the first redistribution layers, and a second bonding layer including a second bonding insulating layer, a second redistribution portion including second redistribution layers, a second wiring insulating layer disposed between the second redistribution layers, and a second semiconductor chip disposed on the second redistribution portion. A lower surface of the first bonding insulating layer is bonded to an upper surface of the second bonding insulating layer, an upper surface of the first bonding insulating layer contacts the first body portion, a lower surface of the second bonding insulating layer contacts the second wiring insulating layer, and the first redistribution portion width is greater than the first semiconductor chip width.
Abstract:
A semiconductor device includes a stack structure on a substrate, the stack structure including alternating gate electrodes and insulating layers stacked along a first direction, a vertical opening through the stack structure along the first direction, the vertical opening including a channel structure having a semiconductor layer on an inner sidewall of the vertical opening, and a variable resistive material on the semiconductor layer, a vacancy concentration in the variable resistive material varies along its width to have a higher concentration closer to a center of the channel structure than to the semiconductor layer, and an impurity region on the substrate, the semiconductor layer contacting the impurity region at a bottom of the channel structure.
Abstract:
A semiconductor light emitting device includes a light emitting structure having a first conductivity-type semiconductor layer, an active layer and a second conductivity-type semiconductor layer, a transparent electrode layer on the second conductivity-type semiconductor layer and spaced apart from an edge of the second conductivity-type semiconductor layer, a first insulating layer on the light emitting structure to cover the transparent electrode layer and including a plurality of holes connected to the transparent electrode layer, and a reflective electrode layer on the first insulating layer and connected to the transparent electrode layer through the plurality of holes.
Abstract:
Semiconductor light-emitting devices, and semiconductor light-emitting packages, include at least one light-emitting structure including a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer sequentially stacked on a substrate, the at least one light-emitting structure having a first region and a second region delimiting the first region. The light-emitting device includes a groove in the second region, and the groove is adjacent to an edge of the substrate and extends parallel to the edge of the substrate.
Abstract:
An air conditioner includes a body installed at an outdoor space, and an air discharge tube to guide cold air discharged from the body to an indoor space. An evaporator and a condenser are installed in the body. The evaporator is disposed at a higher level than the condenser. Accordingly, it possible to transfer condensed water generated from the evaporator to the condenser by gravity.
Abstract:
A semiconductor device may include a substrate, a plurality of cell strings perpendicular to an upper surface of the substrate, and a bit line connected to at least six of the cell strings. Each of the cell strings may include a plurality of memory cells connected in series to each other in a direction perpendicular to the upper surface of the substrate, first to fourth ground selection transistors connected in series to each other between the plurality of memory cells and the substrate, and a string selection transistor between the plurality of memory cells and the bit line. A first one of the first to fourth selection ground selection transistors may have a first threshold voltage distribution, and a second one of the first to fourth ground selection transistors may have a second threshold voltage distribution. The second threshold voltage distribution may be different from the first threshold voltage distribution.
Abstract:
A semiconductor light emitting device includes: a light emitting structure having a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer stacked therein along a stacking direction, a transparent electrode layer on the second conductivity-type semiconductor layer and divided into first and second regions, the transparent electrode layer having a plurality of first through-holes disposed in the first region, an insulating reflective layer covering the transparent electrode layer and having a plurality of second through-holes in a region overlapping the second region along the stacking direction, and a reflective electrode layer on the region of the insulating reflective layer and connected to the transparent electrode layer through the plurality of second through-holes.
Abstract:
A vertical memory device and method of manufacture thereof are provided. The vertical memory device includes gate electrode layers stacked on a substrate; a channel layer penetrating through the gate electrode layers; and a first epitaxial layer in contact with a lower portion of the channel layer and including a region having a diameter smaller than an external diameter of the channel layer.
Abstract:
In accordance with an embodiment of the present disclosure, a cooking apparatus includes a casing, a cooking chamber provided inside the casing and including a discharge plate at which a plurality of outlet holes are formed, a tray provided at a bottom surface of the cooking chamber to support food, and a hot air discharging unit configured to discharge high-temperature air into the cooking chamber through the outlet holes, wherein the plurality of outlet holes are formed at a first area facing the tray.