Abstract:
A method of using a high-strength bonding and coating mixture is disclosed. The mixture includes a silicon compound having a polycarbosilane backbone and a powder having a plurality of individual powder grains. Each of the powder grains has a diameter substantially between 0.05 micrometers and 50 micrometers. The mixture is applied to one or more work pieces and the work piece(s) is (are) heated in either an inert or reduction environment to a temperature sufficient to decompose the silicon compound into gaseous atoms and radicals of silicon and carbon.
Abstract:
A method of fabricating the semiconductor wafer processing fixtures for having longer longevity on high stressed film applications such as LPCVD-SiN, silicon carbide and other ceramics than that of non-processed parts. One aspect of the invention includes nitriding, oxidizing, or carbiding a surface layer of a polysilicon part, such as furnaceware, for converting silicon to a silicon compound and its converted surface covers and masks the underlying polycrystalline structure. A plasma immersion ion implantation of a heavy noble gas or carbon, silicon or nitrogen is followed by to form high-energy states creating gettering states adjacent the surface and the ion implanted region serves to anchor production layers such as LPCVD-SiN forming on the polysilicon part. As a result of gettering effect, tightly bonded high stressed film onto a polysilicon part allows the CVD deposition of much thicker films without peeling or cracking as long as the gettering effect remains.
Abstract:
The configuration of one or more barrier layers for encapsulating a device is controlled by setting parameters of atomic layer deposition (ALD). A substrate formed with the device is placed on a susceptor and exposed to multiple cycles of source precursor gas and reactant precursor gas injected by reactors of a deposition device. By adjusting one or more of (i) the relative speed between the susceptor and the reactors, (ii) configuration of the reactors, and (iii) flow rates of the gases injected by the reactors, the configuration of the layers deposited on the device can be controlled. By controlling the configuration of the deposited layers, defects in the deposited layers can be prevented or reduced.
Abstract:
A method for forming a thin film using radicals generated by plasma may include generating radicals of a reactant precursor using plasma; forming a first thin film on a substrate by exposing the substrate to a mixture of the radicals of the reactant precursor and a source precursor; exposing the substrate to the source precursor; and forming a second thin film on the substrate by exposing the substrate to the mixture of the radicals of the reactant precursor and the source precursor. Since the substrate is exposed to the source precursor between the formation of the first thin film and the formation of the second thin film, the rate of deposition may be improved.
Abstract:
Embodiments relate to growing an epitaxy gallium-nitride (GaN) layer on a porous silicon (Si) substrate. The porous Si substrate has a larger surface area compared to non-porous Si substrate to distribute and accommodate stress caused by materials deposited on the substrate. An interface adjustment layer (e.g., transition metal silicide layer) is formed on the porous silicon substrate to promote growth of a buffer layer. A buffer layer formed for GaN layer may then be formed on the silicon substrate. A seed-layer for epitaxial growth of GaN layer is then formed on the buffer layer.
Abstract:
A vapor deposition reactor includes a chamber filled with a first material, and at least one reaction module in the chamber. The reaction module may be configured to make a substrate pass the reaction module through a relative motion between the substrate and the reaction module. The reaction module may include an injection unit for injecting a second material to the substrate. A method for forming thin film includes positioning a substrate in a chamber, filling a first material in the chamber, moving the substrate relative to a reaction module in the chamber, and injecting a second material to the substrate while the substrate passes the reaction module.
Abstract:
A mixture includes a silicon compound having a polycarbosilane backbone, and a powder having a plurality of individual powder grains, wherein each of the plurality of powder grains has a diameter substantially between 0.05 micrometers and 50 micrometers.
Abstract:
A process for making a diet food product, includes the stage of putting a certain amount of treated pork skin into an s-cutter and pouring in boiled water with 100:400 ratio, then by opening the steam valve and applying steam into the pot for 20-30 minute then, in order to reduce a fat portion, pour the water and apply the steam again for 30˜60 minute with cover closed, then the temperature and the pressure increase and collected at the bottom of the pot, cutting the boiled pork skin, applying 0.67% of salt to produce a gel and making a gel that is sticky, to eliminate the smell, add ginger, garlic, ginseng, soju and then fix the form.
Abstract:
Embodiments relate to using radicals to at different stages of deposition processes. The radicals may be generated by applying voltage across electrodes in a reactor remote from a substrate. The radicals are injected onto the substrate at different stages of molecular layer deposition (MLD), atomic layer deposition (ALD), and chemical vapor deposition (CVD) to improve characteristics of the deposited layer, enable depositing of material otherwise not feasible and/or increase the rate of deposition. Gas used for generating the radicals may include inert gas and other gases. The radicals may disassociate precursors, activate the surface of a deposited layer or cause cross-linking between deposited molecules.
Abstract:
Performing atomic layer deposition (ALD) using radicals of a mixture of nitrogen compounds to increase the deposition rate of a layer deposited on a substrate. A mixture of nitrogen compound gases is injected into a radical reactor. Plasma of the compound gas is generated by applying voltage across two electrodes in the radical reactor to generate radicals of the nitrogen compound gases. The radicals are injected onto the surface of a substrate previously injected with source precursor. The radicals function as a reactant precursor and deposit a layer of material on the substrate.