摘要:
Peripheral nerve field stimulation (PNFS) may be controlled based on detected physiological effects of the PNFS, which may be an efferent response to the PNFS. In some examples, a closed-loop therapy system may include a sensing module that senses a physiological parameter of the patient, which may be indicative of the patient's response to the PNFS. Based on a signal generated by the sensing module, the PNFS may be activated, deactivated or modified. Example physiological parameters of the patient include heart rate, respiratory rate, electrodermal activity, muscle activity, blood flow rate, sweat gland activity, pilomotor reflex, or thermal activity of the patient's body. In some examples, a patient pain state may be detected based on a signal generated by the sensing module, and therapy may be controlled based on the detection of the pain state.
摘要:
A method and apparatus for optimizing a computer assisted procedure is provided. A method and apparatus for performing a procedure is also provided. Data can be accessed and processed to optimize and perform a procedure. The data can be augmented or supplemented with patient specific data.
摘要:
Devices, systems and methods for delivering one or more drugs to the cerebrospinal fluid periodically replace continuous infusion of the a solution with intermittent bolus infusion of the solution to reduce the local concentration of a drug over time at a vertebral level in the patient's spinal canal relative to the drug infused continuously through the infusion section of a catheter intrathecally into a patient's spinal canal at the vertebral level. Such periodic replacement of continuous infusion with intermittent bolus infusion assists in prevention formation of an inflammatory mass at the vertebral level.
摘要:
Devices, systems and methods for delivering one or more drugs to one or more internal body locations (such as the cerebrospinal fluid) are disclosed. In various aspects, the systems and methods may involve catheters having infusion sections with permeable membranes and one or more valves that control flow to the infusion sections.
摘要:
An auxiliary power system includes an engine balance system, an integrated alternator/starter, a thermal management system, noise-vibration-harshness control system, an emissions/fuel economy system, an APU master control unit, and a vehicle control system.
摘要:
A liquid propane gas fuel system includes a propane fuel tank. A two stage pressure regulator defined by a housing with a fuel inlet and a fuel outlet is also included. A first fuel conduit extends from an outlet in the fuel tank to the fuel inlet in the pressure regulator. The system supplies fuel to an engine that includes an exhaust gas manifold. A thermoconductive mounting bracket is secured to the housing of the pressure regulator and manifold to transmit heat from the manifold to the regulator in proportion to the load imposed on the engine. A chokeless carburetor is also included in the system and is in fluid communication through a second fuel conduit with the outlet of the pressure regulator. In an alternative embodiment, a heat exchange ris included in the first fuel conduit. In a second alternative embodiment, an electric heating element is positioned within the housing of the pressure regulator.
摘要:
Techniques for managing urinary or fecal incontinence include delivering a first type of therapy to generate a first physiological response and, upon detecting a trigger event, delivering a second type of therapy to generate a second physiological response. The first type of therapy can be delivered on a substantially regular basis, while the second type of therapy is delivered as needed to provide an additional boost of therapy. The trigger event for activating the delivery of the second type of therapy may include input from a sensor that indicates a bladder condition, patient activity level or patient posture, or patient input. In some examples, the therapy is stimulation therapy.
摘要:
Implantable medical devices (IMDS) having anti-infective properties are described. Anti-infective agents are disposed in, on, or about at least a portion of a surface of the medical device. The anti-infective agents are disposed in or on a vehicle, which may be in the form of a coating layer or covering. The vehicle may be biodegradable so that, over time, the anti-infective agent is removed from a tissue location into which the device is implanted, reducing the likelihood that microorganisms resistant to the anti-infective agent will develop. IMDs having an anti-infective agent and an anti-activity agent disposed therein, thereabout, or thereon are also described. The anti-activity agent interferes with the activity of the anti-infective agent, may be released from a surface at the IMD at a time when activity of the anti-infective agent is no longer desired, and may reduce the likelihood that microorganisms resistant to the anti-infective agent will develop.
摘要:
Devices, systems and methods for delivering one or more drugs to one or more internal body locations (such as the cerebrospinal fluid) are disclosed. In various aspects, the systems and methods may involve catheters having infusion sections with permeable membranes and one or more tracking elements that may be used to place the infusions sections on the catheters in selected locations such as the spinal region.
摘要:
A movement state of a patient is detected based on brain signals, such as an electroencephalogram (EEG) signal. In some examples, a brain signal within a dorsal-lateral prefrontal cortex of a brain of the patient indicative of prospective movement of the patient may be sensed in order to detect the movement state. The movement state may include the brain state that indicates the patient is intending on initiating movement, initiating movement, attempting to initiate movement or is actually moving. In some examples, upon detecting the movement state, a movement disorder therapy is delivered to the patient. In some examples, the therapy delivery is deactivated upon detecting the patient is no longer in a movement state or that the patient has successfully initiated movement. In addition, in some examples, the movement state detected based on the brain signals may be confirmed based on a signal from a motion sensor.