Abstract:
A light source is provided capable of maintaining the temperature of a collector surface at or below a predetermined temperature. The light source in accordance with various embodiments of the present disclosure includes a processor, a droplet generator for generating a droplet to create extreme ultraviolet light, a collector for reflecting the extreme ultraviolet light into an intermediate focus point, a light generator for generating pre-pulse light and main pulse light, and a thermal image capture device for capturing a thermal image from a reflective surface of the collector.
Abstract:
An extreme ultraviolet (EUV) photolithography system detects debris travelling from an EUV generation chamber to a scanner. The photolithography system includes a detection light source and a sensor. The detection light source outputs a detection light across a path of travel of debris particles from the EUV generation chamber. The sensor senses debris particles by detecting interaction of the debris particles with the detection light.
Abstract:
A lithography system is provided capable of deterring contaminants, such as tin debris from entering into the scanner. The lithography system in accordance with various embodiments of the present disclosure includes a processor, an extreme ultraviolet light source, a scanner, and a hollow connection member. The light source includes a droplet generator for generating a droplet, a collector for reflecting extreme ultraviolet light into an intermediate focus point, and a light generator for generating pre-pulse light and main pulse light. The droplet generates the extreme ultraviolet light in response to the droplet being illuminated with the pre-pulse light and the main pulse light. The scanner includes a wafer stage. The hollow connection member includes an inlet that is in fluid communication with an exhaust pump. The hollow connection member provides a hollow space in which the intermediate focus point is disposed. The hollow connection member is disposed between the extreme ultraviolet light source and the scanner.
Abstract:
An extreme ultraviolet (EUV) photolithography system generates EUV light by irradiating droplets with a laser. The system includes a droplet generator with a nozzle and a piezoelectric structure coupled to the nozzle. The generator outputs groups of droplets. A control system applies a voltage waveform to the piezoelectric structure while the nozzle outputs the group of droplets. The waveform causes the droplets of the group to have a spread of velocities that results in the droplets coalescing into a single droplet prior to being irradiated by the laser.
Abstract:
An immersion lithography apparatus includes a lens system, an immersion hood, a wafer stage, an inspection system and a cleaning fluid supplier. The lens system is configured to project a pattern onto a wafer. The immersion hood is configured to confine an immersion fluid between the lens system and the wafer, and includes a peripheral hole configured to suck up the immersion fluid. The wafer stage is configured to position the wafer under the lens system. The inspection system is configured to detect whether there is contamination in the peripheral hole. The cleaning fluid supplier is coupled to the inspection system and configured to supply a cleaning fluid through the peripheral hole to remove the contamination, in which the inspection system and the cleaning fluid supplier are coupled to the wafer stage.
Abstract:
The present disclosure relates to a photolithography system having an ambulatory projection and/or detection gratings that provide for high quality height measurements without the use of an air gauge. In some embodiments, the photolithography system has a level sensor having a projection source that generates a measurement beam that is provided to a semiconductor substrate via a projection grating. A detector is positioned to receive a measurement beam reflected from the semiconductor substrate via a detection grating. An ambulatory element selectively varies an orientation of the projection grating and/or the detection grating to improve the measurement of the level sensor. By selectively varying an orientation of the projection and/or detection gratings, erroneous measurements of the level sensor can be eliminated.
Abstract:
The present disclosure relates to a lithographic tool arrangement for semiconductor workpiece processing. The lithographic tool arrangement groups lithographic tools into clusters, and selectively transfers a semiconductor workpiece between a plurality of lithographic tools of a first type in a first cluster to a plurality of lithographic tools of a second type in a second cluster. The selective transfer is achieved though a transfer assembly, which is coupled to a defect scan tool that identifies defects generated in the lithographic tool of the first type. The disclosed lithographic tool arrangement also utilizes shared structural elements such as a housing assembly, and shared functional elements such as gases and chemicals. The lithographic tool arrangement may consist of baking, coating, exposure, and development units configured to provide a modularization of these various components in order to optimize throughput and efficiency for a given lithographic fabrication process.
Abstract:
The present disclosure is directed to a modularized vessel droplet generator assembly (MGDVA) including a droplet generator assembly (DGA). Under a normal operation, the liquid fuel moves along an operation pathway extending through the DGA to eject or discharge the liquid fuel (e.g., liquid tin) from a nozzle of the DGA into a vacuum chamber. The liquid fuel in the vacuum chamber is then exposed to a laser generating an extreme ultra-violet (EUV) light. Under a service operation, the operation pathway is closed and a service pathway extending through the DGA is opened. A gas is introduced into the service pathway forming a gas-liquid interface between the gas and the liquid fuel. The gas-liquid interface is driven to an isolation valve directly adjacent to the DGA. In other words, the gas pushes back the liquid fuel to the isolation valve. Once the gas-liquid interface reaches the isolation valve, the isolation valve is closed isolating the DGA from the liquid fuel.
Abstract:
In an embodiment, a method includes: heating a byproduct transport ring of an extreme ultraviolet source, the byproduct transport ring disposed beneath vanes of the extreme ultraviolet source; after heating the byproduct transport ring for a first duration, heating the vanes; after heating the vanes, cooling the vanes; and after cooling the vanes for a second duration, cooling the byproduct transport ring.
Abstract:
A method includes: depositing a mask layer over a substrate; directing radiation reflected from a collector of a lithography system toward the mask layer according to a pattern; blocking a portion of the radiation by a blocking structure, the blocking structure being attached to a reflector of the lithography system; forming openings in the mask layer by removing regions of the mask layer exposed to the radiation; and removing material of a layer underlying the mask layer exposed by the openings.