Abstract:
An oxide semiconductor field effect transistor (OS FET) device includes a first dielectric layer formed on a substrate, an oxide semiconductor (OS) island formed on the first dielectric layer, a first gate electrode formed on the OS island, a gate dielectric layer formed in between the first gate electrode and the OS island, a patterned hard mask layer formed on a top surface of the first gate electrode, an etch stop layer covering a top surface of the patterned hard mask layer and sidewalls of the first gate electrode, and a source electrode and a drain electrode formed on the OS island. At least one of the source electrode and the drain electrode partially overlaps the etching stop layer on the sidewalls of the first gate electrode.
Abstract:
A semiconductor apparatus including a stacked capacitance structure is provided. The stacked capacitance structure includes a first inner metal layer having a first pad area adjacent to an edge of the first inner metal layer, a first insulating layer disposed on the first inner metal layer and exposing the first pad area, a second inner metal layer disposed on the first insulating layer and having a second pad area adjacent to an edge of the second inner metal layer, a second insulating layer disposed on the second inner metal layer and exposing the second pad area, and a third inner metal layer covering the second inner metal layer and including at least one first slit. The first pad area and the second pad area include a plurality of pads. The first slit corresponds to the second pad area, such that the pads on the second pad area are exposed.
Abstract:
A chip-stack interposer structure including a passive device is described, including an interposing layer, a capacitor, a first contact and a second contact. The capacitor is embedded in or disposed on the interposing layer, including a first electrode, a second electrode and a dielectric layer between the first and the second electrodes. The first contact is connected with the first electrode. The second contact is connected with the second electrode. The first electrode and the second electrode are disposed at the same side of the interposing layer or at different sides of the interposing layer.
Abstract:
An integrated circuit includes a capacitor and a non-inductive resistor. A substrate has a capacitor area and a resistor area. A patterned stacked structure including a bottom conductive layer, an insulating layer and a top conductive layer from bottom to top is sandwiched by a first dielectric layer and a second dielectric layer disposed on the substrate. A first metal plug and a second metal plug contact the top conductive layer and the bottom conductive layer of the capacitor area respectively, thereby the patterned stacked structure in the capacitor area constituting the capacitor. A third metal plug and a fourth metal plug contact the bottom conductive layer and the top conductive layer of the resistor area respectively, and a fifth metal plug contacts the bottom conductive layer and the top conductive layer of the resistor area simultaneously, thereby the patterned stacked structure in the resistor area constituting the non-inductive resistor.
Abstract:
An oxide semiconductor device and a method for manufacturing the same are provided in the present invention. The oxide semiconductor device includes a back gate, an oxide semiconductor film, a pair of source and drain electrodes, a gate insulating film, a gate electrode on the oxide semiconductor film with the gate insulating film therebetween, an insulating layer covering only over the gate electrode and the pair of source and drain electrodes, and a top blocking film over the insulating layer.
Abstract:
An oxide semiconductor device and a method for manufacturing the same are provided in the present invention. The oxide semiconductor device includes a back gate, an oxide semiconductor film, a pair of source and drain electrodes, a gate insulating film, a gate electrode on the oxide semiconductor film with the gate insulating film therebetween, an insulating layer covering only over the gate electrode and the pair of source and drain electrodes, and a top blocking film over the insulating layer.
Abstract:
A semiconductor device is provided in the present invention, which includes a substrate, an oxide-semiconductor layer, source/drain regions, a dielectric layer, a first gate electrode, a second gate electrode and a charge storage structure. The oxide-semiconductor layer is disposed on the first gate electrode on the substrate. The source/drain regions are disposed on the oxide-semiconductor layer. The first dielectric layer covers on the oxide-semiconductor layer and source/drain regions. A second gate electrode is disposed between source/drain regions and partially covers the oxide-semiconductor layer. The oxide-semiconductor layer may be optionally disposed between the first gate electrode and the oxide-semiconductor layer or be disposed on the second gate electrode.
Abstract:
A semiconductor device is provided in the present invention, which includes a substrate, an oxide-semiconductor layer, source/drain regions, a dielectric layer, a first gate electrode, a second gate electrode and a charge storage structure. The oxide-semiconductor layer is disposed on the first gate electrode on the substrate. The source/drain regions are disposed on the oxide-semiconductor layer. The first dielectric layer covers on the oxide-semiconductor layer and source/drain regions. A second gate electrode is disposed between source/drain regions and partially covers the oxide-semiconductor layer. The oxide-semiconductor layer may be optionally disposed between the first gate electrode and the oxide-semiconductor layer or be disposed on the second gate electrode.
Abstract:
A method for fabricating a semiconductor memory device is disclosed. A semiconductor substrate having a main surface is prepared. At least a first dielectric layer is formed on the main surface of the semiconductor substrate. A first OS FET device and a second OS FET device are formed on the first dielectric layer. At least a second dielectric layer is formed to cover the first dielectric layer, the first OS FET device, and the second OS FET device. A first MIM capacitor and a second MIM capacitor are formed on the second dielectric layer. The first MIM capacitor is electrically coupled to the first OS FET device, thereby constituting a DOSRAM cell. The second MIM capacitor is electrically coupled to the second OS FET device, thereby constituting a NOSRAM cell.
Abstract:
A manufacturing method of an oxide semiconductor device includes the following steps. An interposer substrate is provided. At least one oxide semiconductor transistor is formed on the interposer substrate. At least one trough silicon via (TSV) is formed in the interposer substrate. An interconnection structure on the interposer substrate, and the at least one oxide semiconductor transistor is connected to the interconnection structure.