Abstract:
A method of applying a protective coating with improved adhesion on an aluminum alloy component includes first pretreating the surface of a component by depositing a sacrificial protective immersion layer using a zincating or similar process. Portions of the protective immersion layer as well as portions of the underlying aluminum alloy substrate are then electrolytically etched off in an ionic liquid. A protective aluminum coating is then electrodeposited on the component in an ionic liquid.
Abstract:
Disclosed herein is a coated aluminum component which includes an aluminum substrate and a protective material disposed on the substrate wherein the protective material includes a galvanic corrosion protection layer and an impact protection layer. Also disclosed is a method of applying the protective material.
Abstract:
A method of anodizing includes immersing an aluminum alloy workpiece in a phosphoric acid anodizing solution and applying a voltage to form a porous oxide layer on the workpiece. The workpiece is then removed from the phosphoric acid anodizing solution and immersed in a controlled anodizing solution. A voltage is applied to form a dense oxide layer under the porous oxide layer. Dissolution of the porous oxide layer is controlled during the formation of the dense oxide layer by using tartaric acid in the controlled acid solution such that the thickness of the porous oxide layer is substantially equivalent before and after the formation of the dense oxide layer. The duplex anodized layer can be further sealed by soaking in a sealing solution to protect the porous oxide layer from hydrolytic decomposition, to improve corrosion protection, and to enhance the bonding with other structural components through adhesives.
Abstract:
An aluminum alloy component is protected by an electrodeposited aluminum coating. An electrodeposited intermediate aluminum-transition metal alloy and/or rare earth metal alloy layer between the aluminum alloy substrate and the protective coating enhances coating adhesion and corrosion resistance. The intermediate layer is formed by room temperature electrodeposition in ionic liquids.
Abstract:
A sealing process includes applying a first reactant to a substrate having a porous structure, the first reactant comprising a chromium (III) precursor and a transition metal precursor and applying a second reactant to the first reactant, the second reactant comprising a rare earth element precursor and an alkaline earth element precursor to form reservoirs of trivalent chromium in pore space of the porous structure, and a physical barrier over the substrate and the reservoirs.
Abstract:
A method of assessing galvanic electronic isolation of two components at a joint of the two components includes measuring a first electrical resistance at a first condition across a joint of two components and comparing the first electrical resistance to a threshold resistance. The comparison of the first electrical resistance to the threshold resistance is indicative of a degree of electrical isolation of the two components. A second electrical resistance is measured at a second condition and the second electrical resistance is compared to the first electrical resistance. The result of the comparison of the second electrical resistance to the first electrical resistance is indicative of a type of electrical connection between the two components.
Abstract:
A corrosion resistant aluminum alloy abradable coating for use as a seal material consists of a porous base metal alloy layer containing corrosion inhibiting metal compounds dispersed throughout the porous base metal alloy layer. A method of forming a corrosion resistant aluminum alloy abradable coating consists of co-thermal spraying aluminum alloy powder plus polymer powder and particles containing corrosion inhibiting metal compounds.
Abstract:
A coated metal component includes an aluminum alloy substrate and a protective aluminum coating on a substrate. An interfacial boundary layer between the coating and substrate enhances coating adhesion. The boundary layer includes isolated regions of copper or tin produced by a double zincating process. The protective aluminum coating exhibits improved adhesion and is formed by electrodeposition in an ionic liquid.
Abstract:
A corrosion resistant article including an aluminum substrate and a corrosion-inhibiting cerium based corrosion inhibitor corrosion inhibiting additive on the aluminum substrate, the corrosion inhibiting additive comprising an anodic corrosion inhibitor and a cathodic corrosion inhibitor, the anodic corrosion inhibitor greater than 25 wt % of the total inhibitor.
Abstract:
A metal article comprises an alloy substrate having a surface and a non-diffused metal monolayer disposed thereon. The surface has a first surface work function value Φs. The non-diffused monolayer deposited on the surface has a second surface work function value Φs that is less negative than the first surface work function value. A method for depositing the monolayer via underpotential deposition (UPD) is also disclosed.