Abstract:
According to an embodiment of the invention, a chip package is provided. The chip package includes a substrate having an upper surface and a lower surface, a plurality of conducting pads located in the substrate or under the lower surface thereof, a dielectric layer located between the conducting pads, a hole extending from the upper surface towards the lower surface of the substrate and exposing a portion of the conducting pads, and a conducting layer located in the hole and electrically contacting the conducting pads.
Abstract:
The present invention provides a mask comprising a substrate, a plurality of strip patterns and at least an assist pattern. The strip patterns are disposed on the substrate and arranged in parallel to one another. The assist pattern is in a strip shape and disposed on the substrate. The assist pattern is arranged in parallel to and outside of the outermost strip pattern of the strip patterns. The assist pattern and the strip pattern have the same phase, while the assist pattern has a width larger than that of the strip patterns. When the mask is applied for exposure process, the pattern of the assist pattern will not be transferred to the underlying layer to be exposed.
Abstract:
An embodiment of the invention provides a manufacturing method of a chip package including: providing a semiconductor wafer having a plurality of device regions separated by a plurality of scribe lines; bonding a package substrate to the semiconductor wafer wherein a spacer layer is disposed therebetween and defines a plurality of cavities respectively exposing the device regions and the spacer layer has a plurality of through holes neighboring the edge of the semiconductor wafer; filling an adhesive material in the through holes wherein the material of the spacer layer is adhesive and different from the adhesive material; and dicing the semiconductor wafer, the package substrate and the spacer layer along the scribe lines to form a plurality of chip packages separated from each other.
Abstract:
The invention provides an integrated circuit package and method of fabrication thereof. The integrated circuit package comprises an integrated circuit chip having a photosensitive device thereon; a bonding pad formed on an upper surface of the integrated circuit chip and electrically connected to the photosensitive device; a barrier formed between the bonding pad and the photosensitive device; and a conductive layer formed on a sidewall of the integrated circuit chip and electrically connected to the bonding pad. The barrier layer blocks overflow of the adhesive layer into a region, on which the photosensitive device is formed, to improve yield for fabricating the integrated circuit package.
Abstract:
The present invention provides a chip package, including: a chip having a semiconductor device thereon; a cap layer over the semiconductor device; a spacer layer between the chip and the cap layer, wherein the spacer layer surrounds the semiconductor device and forms a cavity between the chip and the cap layer; and an anti-reflective layer between the cap layer and the chip, wherein the anti-reflective layer has a overlapping region with the spacer layer and extends into the cavity. Furthermore, a method for fabricating a chip package is also provided.
Abstract:
The invention provides an integrated circuit package and method of fabrication thereof. The integrated circuit package comprises an integrated circuit chip having a photosensitive device thereon; a bonding pad formed on an upper surface of the integrated circuit chip and electrically connected to the photosensitive device; a barrier formed between the bonding pad and the photosensitive device; and a conductive layer formed on a sidewall of the integrated circuit chip and electrically connected to the bonding pad. The barrier layer blocks overflow of the adhesive layer into a region, on which the photosensitive device is formed, to improve yield for fabricating the integrated circuit package.
Abstract:
A method is provided for forming a semiconductor device that reduces metal-stress-induced photo misalignment by incorporating a multi-layered anti-reflective coating over a metal layer. The method includes providing a substrate with a conductive layer formed over the substrate, depositing a multi-layered anti-reflective coating (including alternating layers of titanium and titanium nitride), defining a plurality of conductive lines in connection with a first etching step, depositing a dielectric layer, and defining at least one via in connection with a second etching step.
Abstract:
According to an embodiment of the invention, a chip package is provided, which includes: a substrate having an upper surface and a lower surface; a hole extending from the upper surface toward the lower surface; an insulating layer located overlying a sidewall of the hole; and a material layer located overlying the sidewall of the hole, wherein the material layer is separated from the upper surface of the substrate by a distance and a thickness of the material layer decreases along a direction toward the lower surface.
Abstract:
According to an embodiment of the invention, a chip package is provided. The chip package includes: a substrate having an upper surface and a lower surface; a plurality of conducting pads located under the lower surface of the substrate; a dielectric layer located between the conducting pads; a trench extending from the upper surface towards the lower surface of the substrate; a hole extending from a bottom of the trench towards the lower surface of the substrate, wherein an upper sidewall of the hole inclines to the lower surface of the substrate, and a lower sidewall or a bottom of the hole exposes a portion of the conducting pads; and a conducting layer located in the hole and electrically connected to at least one of the conducting pads.
Abstract:
A chip package includes a substrate having an upper surface and a lower surface, a plurality of conducting pads located under the lower surface of the substrate, and a dielectric layer located between the conducting pads. A hole is provided in the substrate, which extends from the upper surface towards the lower surface of the substrate. A sidewall or a bottom of the hole exposes a portion of the conducting pads. The upper opening of the hole near the upper surface is smaller than a lower opening of the hole near the lower surface. An upper conducting pad has at least an opening or a trench exposing a lower conducting pad of the conducting pads. A conducting layer is disposed in the hole, which electrically contacting at least one of the conducting pads.