Abstract:
A hydroprocessing catalyst has been developed. The catalyst is a unique transition metal tungsten oxy-hydroxide material. The hydroprocessing using the transition metal tungsten oxy-hydroxide material may include hydrodenitrification, hydrodesulfurization, hydrodemetallation, hydrodesilication, hydrodearomatization, hydroisomerization, hydrotreating, hydrofining, and hydrocracking.
Abstract:
Described herein are the one-pot synthesis and characterization of a library of low molecular weight peptoid compounds that are able to form gels at room temperature. The compounds are synthesized from biologically-based starting materials, are biocompatible, and are resistant to degradation by proteases and peptidases. The compounds and gels synthesized therefrom can be used in such applications as tissue engineering, drug delivery, separation of biomolecules, and stimulus-responsive advanced materials
Abstract:
The present invention relates to a hydroprocessing catalyst comprising: (i) one or more hydrogenation metal components selected from a group consisting of VIB group metal, VIIB group metal and VIII group metal; and (ii) an organic compound expressed by the following chemical formula 1 or an organometallic compound expressed by the following chemical formula 2. Chemical formula 1: R1COCH2COR2 (wherein, R1 and R2 are the same or different from each other, and are one or more groups selected from a group consisting of C1 to C12 alkyl, C6 to C12 allyl, C1 to C12 alkoxy and hydroxy). Chemical formula 2: X(R1COCH1COR2)n (wherein, X is selected from a group consisting of VIB group metal, VIIB group metal and VIII group metal, R1 and R2 are the same or different from each other, and are one or more groups selected from a group consisting of C1 to C12 alkyl, C6 to C12 allyl, C1 to C12 alkoxy and hydroxy, and n is an integer of 1 to 6).
Abstract:
A METHOD OF MODIFYING IRON, COBALT AND NICKEL-CONTAINING CATALYSTS EMPLOYED FOR THE HYDROGENATION OF DIOLEFINS AND TRIOLEFINS TO MONOOLEFINS WHICH INVOLVES INTRODUCING INTO CONTACT WITH THE REACTANTS A MATERIAL SELECTED FROM TRHE GROUP CONSISTING OF ORGANIC ACIDS, ALDEHYDES, KETONES, ANHYDROUS AMMONIA, AMINES AND METHANOL.
Abstract:
A hydroprocessing catalyst has been developed. The catalyst is a unique transition metal tungsten oxy-hydroxide material. The hydroprocessing using the transition metal tungsten oxy-hydroxide material may include hydrodenitrification, hydrodesulfurization, hydrodemetallation, hydrodesilication, hydrodearomatization, hydroisomerization, hydrotreating, hydrofining, and hydrocracking.
Abstract:
Embodiments of the invention relate to a hydroprocessing catalyst including (i) one or more hydrogenation metal components selected from a group consisting of a VIB group metal, a VIIB group metal, and a VIII group metal, and (ii) an organic compound expressed by the formula: R1COCH2COR2 (wherein, R1 and R2 are the same or different from each other, and are one or more groups selected from a group consisting of C1 to C12 alkyl, C6 to C12 allyl, C1 to C12 alkoxy and hydroxy), or an organometallic compound expressed by the formula: X(R1COCH1COR2)n (wherein, X is selected from a group consisting of VIB group metal, VIIB group metal and VIII group metal, R1 and R2 are the same or different from each other, and are one or more groups selected from a group consisting of C1 to C12 alkyl, C6 to C12 allyl, C1 to C12 alkoxy and hydroxy, and n is an integer of 1 to 6).
Abstract:
This invention relates to a method for producing a ruthenium catalyst in which ruthenium supported on at least one metal oxide is pretreated with an aldehyde compound, a phosphorus compound, and a lower alcohol compound, and a method for producing alkyl- or alkenyl-substituted compound using the ruthenium catalyst.
Abstract:
This invention relates to an organotin-based catalyst system for polyurethane synthesis that is useful in coatings applications. The catalyst has low activity in the absence of oxygen. When a coating mixture comprising the catalyst is sprayed and/or applied to a substrate as a thin film in air, the catalyst is activated. For solvent-based refinish systems comprising hydroxyl and isocyanate species at high solids levels, the catalyst system therefore provides extended viscosity stability, i.e., pot life.
Abstract:
This invention relates to an organotin-based catalyst system for polyurethane synthesis that is useful in coatings applications. The catalyst has low activity in the absence of oxygen. When a coating mixture comprising the catalyst is sprayed and/or applied to a substrate as a thin film in air, the catalyst is activated. For solvent-based refinish systems comprising hydroxyl and isocyanate species at high solids levels, the catalyst system therefore provides extended viscosity stability, i.e., pot life.
Abstract:
Cresylic acid ethoxylation is catalyzed by basic compounds and salts of alkaline earth metals. Ethoxylates from such reactions have narrow ethylene oxide distributions, lower pour points and lower by-products as compared to alkali base catalyzed ethoxylation. Suitable catalysts include strontium-containing and barium-containing materials. The catalyst also includes co-catalyst combinations using these materials with one or more promoters including polyols, amines, amides, carboxylic acids and phenols. The co-catalyst combinations can be preformed prior to introduction into the reaction mixture.