Abstract:
A film having first segments and second segments arranged across the film's width direction is disclosed. The first and second segments are separated from each other by polymer interfaces. The first segments include a first polymeric composition and the second segments include a second polymeric composition. At least some of the second segments are layered second segments having first and second layers in the film's thickness direction, and one of the first or second layers includes a third polymeric composition different from the second polymeric composition. An extrusion die useful for making the film and a method for making the film using the extrusion die are also disclosed.
Abstract:
The present invention is directed to a breathable multi-microlayer film material that includes a plurality of alternating coextruded first and second microlayers, wherein the first microlayers comprise an unfilled first polymer composition, and further wherein the second microlayers comprise a second polymer composition and filler particles. The multi-microlayer films may be used in disposable absorbent products, have increased breathability, and generally retain their integrity and strength during processing and use.
Abstract:
The present invention provides a method of forming ductile multilayer silicone resin films. The method may include forming a silicone resin film comprising at least two polymer layers, at least one of them being a silicone resin layer. The thickness of the silicone resin layer(s) is less than a corresponding ductile transition thickness.
Abstract:
Methods and apparatuses are provided for the manufacture of coextruded polymeric multilayer optical films. The multilayer optical films have an ordered arrangement of layers of two or more materials having particular layer thicknesses and a prescribed layer thickness gradient throughout the multilayer optical stack. The methods and apparatuses described allow improved control over individual layer thicknesses, layer thickness gradients, indices of refraction, interlayer adhesion, and surface characteristics of the optical films. The methods and apparatuses described are useful for making interference polarizers, mirrors, and colored films that are optically effective over diverse portions of the ultraviolet, visible, and infrared spectra.
Abstract:
A method and apparatus for the extrusion of multilayered composite products, is provided. In accordance with the inventive method, the relative orientation of a first shaped flow stream and a second shaped flow stream to one another is changed, and the reoriented shaped streams are melt-laminated to produce a layered composite formed independent of division of a layered precursor stream. Beneficially, layered flow streams that differ from one another may be used. Differences in volumetric or mass flow rates may also be used to advantage. The inventive apparatus includes a coextrusion structure and a partition member. The coextrusion structure may advantageously include one or more removably disposed, flow-shaping inserts, and the partition member may be a removably disposed, partition plate. The inventive apparatus beneficially further includes a removably disposed flow sequencer for changing the relative orientation of the flow streams.
Abstract:
Embodiments of the present invention include a novel interfacial surface generator (ISG) design comprised of helical channels and associated methods of using the new design. The novel design addresses processing challenges associated with conventional ISG designs used in layer multiplying coextrusion systems. Embodiments of the present invention may be used in either a static configuration or “active” configuration. In one active configuration, two counter-rotating cylindrical rods and/or moving belts may be used to induce drag, or Couette, flow. Conveyance of materials through the ISG may be due to pressure driven flow, drag flow, or a combination of these.
Abstract:
A multi-layer extrusion die assembly includes a body, a main bore extending longitudinally through the assembly, a core tube, and a plurality of dies. The extrusion die assembly is configured to receive an input stream of material and divide the input stream into a plurality of material streams. Each die is configured to receive one or more of the material streams and to form a single continuous layer of material about the core tube. The layer formed by each die has one or more weld lines running longitudinally along the layer. The dies are arranged along the core tube such that a plurality of concentric layers of material is formed around the core tube. Each die is rotated axially with respect to adjacent dies such that the weld lines of the layer formed by one die.
Abstract:
A method and apparatus for making a segmented multicomponent polymeric film. The method includes providing at least two separated melt streams, including at least two different polymeric compositions, that are separated in a first separation dimension; dividing in a second separation dimension substantially orthogonal to the first separation dimension at least some of the separated melt streams into at least two segmented flow streams; redirecting at least some of the segmented flow streams, with at least some of the segmented flow streams being sequentially redirected in both separation dimensions; and converging the segmented flow streams into a segmented multicomponent polymeric film. A segmented multicomponent polymeric film having projections is also presented, the film having a top surface and a bottom surface, each surface having a different arrangement of polymeric segments that at least partially alternate along the film's cross direction and extend continuously in the film's length direction.
Abstract:
Methods and devices for forming a vertically-oriented multilayer laminates, for example, a vertically-oriented multilayer laminates, are provided. The laminates may be fabricated by hardenable fluids, for example, polymers that are directed along flow paths to divide, repossession, and combine streams to provide the desired laminated structure. The flow divisions and recombination may be practiced repeatedly wherein laminates have tens or even tens of thousands of individual layers may be produced. The polymers used may have comparable viscosities, for example, having viscosity ratios of less than 3. Though aspects of the invention may be used packaging, aspects of the invention may be applied to any field where laminated structures are desired.
Abstract:
A multilayer film includes an extruded first polymer layer confined between extruded second polymer layers. The first polymer layer includes a high aspect ratio crystalline lamellae. The multilayer film is substantially impermeable to gas diffusion.