Abstract:
A non-invasive emitter-photodiode sensor which is able to provide a data-stream corresponding to the actual wavelength of light emitted thereby allowing calibration of the sensor signal processing equipment and resulting in accurate measurements over a wider variation in emitter wavelength ranges.
Abstract:
A method and apparatus (10) for determining the remission of a chemistry (106) which reacts with a medically significant component of a body fluid. The remission of the chemistry (106) changes as it reacts. The method and apparatus (10) include irradiating the chemistry (106) with a radiation source (182), detecting remissions of radiation from the chemistry (106) with a radiation detector (300), providing a radiation pathway (164) between the source (182) and the chemistry (106), providing a remission pathway (164) between the chemistry (106) and the detector (300), and detecting the rate of change of remission of the chemistry (106) with respect to time. The irradiating, detecting and rate detecting steps and apparatus comprise initially irradiating the chemistry (106) at a first time rate and detecting remissions therefrom, comparing remission data from remission readings spaced apart by a first number of intervening remission readings, and determining when the difference between compared readings exceeds a first predetermined limit. The time rate of irradiation of the chemistry is changed once the difference between compared readings exceeds the first limit. Remission data from remission readings spaced apart by a second number of intervening remission readings are then compared. The method and apparatus next determine when the difference between compared readings no longer exceeds a second predetermined limit. The last remission reading is then converted to the concentration of the medically significant component of the body fluid.
Abstract:
A carbon dioxide analyzer for medical purposes is rendered self-calibrating by continuously measuring pairs of two or three each of several components as follows:1st pair: vacuum cell, open hole and sample cell reference cell, open hole and sample cell2nd pair: vacuum cell, standard cell reference cell, standard cell3rd pair: vacuum cell, open hole reference cell, open hole4th pair: vacuum cell, standard cell, sample cell reference cell, standard cell, sample cellThe ratios of these measurement pairs are treated mathematically in a computer or microprocessor to obtain a reading for CO.sub.2 and to correct other readings and to monitor the integrity of the standard cell. A novel two-wheel chopper and mirror arrangement facilitates the measurements.
Abstract:
A continuous monitoring system for measuring the oil content of discharged ballast water based on the use of an ultraviolet fluorescence meter. The meter operates by passing ultraviolet light through a sample jet of water, the fluorescent visible light being measured by a filter-photocell combination angled to the incident beam. At elevated oil concentrations, the meter response diminishes as both ultraviolet and visible light are cut off by the increasing amounts of dark oil present, thus giving a false reading. A photocell or fluorescent indicator screen is therefore proposed as a warning device to be used in conjunction with the above monitoring system, to indicate when the emerging ultraviolet light is obscured by excess quantities of oil.
Abstract:
This relates to systems and methods for measuring a concentration and type of substance in a sample at a sampling interface. The systems can include a light source, optics, one or more modulators, a reference, a detector, and a controller. The systems and methods disclosed can be capable of accounting for drift originating from the light source, one or more optics, and the detector by sharing one or more components between different measurement light paths. Additionally, the systems can be capable of differentiating between different types of drift and eliminating erroneous measurements due to stray light with the placement of one or more modulators between the light source and the sample or reference. Furthermore, the systems can be capable of detecting the substance along various locations and depths within the sample by mapping a detector pixel and a microoptics to the location and depth in the sample.
Abstract:
A device may determine a calibration value for a spectrometer using light from a first light source; deactivate the first light source after determining the calibration value; perform measurement with regard to a sample based on the calibration value, wherein the measurement of the sample is performed using light from a second light source; determine that the calibration value is to be updated; and update the calibration value using the light from the first light source.
Abstract:
Methods and systems for measurement time distribution for referencing schemes are disclosed. The disclosed methods and systems can be capable of dynamically changing the measurement time distribution based on the sample signal, reference signal, noise levels, and SNR. The methods and systems can be configured with a plurality of measurement states, including a sample measurement state, reference measurement state, and dark measurement state. In some examples, the measurement time distribution scheme can be based on the operating wavelength, the measurement location at the sampling interface, and/or targeted SNR. Examples of the disclosure further include systems and methods for measuring the different measurement states concurrently. Moreover, the systems and methods can include a high-frequency detector to eliminate or reduce decorrelated noise fluctuations that can lower the SNR.
Abstract:
The disclosure relates to processing SPR signals, in particular signals obtained by illuminating a conductive surface with light at two wavelengths. Processing SPR signals can involve processing a first and second signal indicative of an intensity of light, received from a conductive layer at which SPR has occurred, as a function of angle of incidence, reflection or diffraction at the layer. The first and second signals each have two dips corresponding to a respective wavelength of the light at a respective angle at which surface plasmon resonance occurs for the respective wavelength and a peak between the two dips. The processing includes deriving a first and second value of a quantity indicative of signal magnitudes in the region of the peak. The first and second values can be compared to detect a change in refractive index at the layer after the first signal and before the second signal was captured.
Abstract:
An optical system includes a sample carrier receiving region configured to receive a sample carrier carrying a sample for processing, a source that emits an excitation signal having a wavelength within a first predetermined wavelength range, and a first set of optical components that direct the excitation signal along an excitation path to the sample carrier receiving region, wherein radiation having a wavelength within a second predetermined wavelength range is emitted from the sample carrier receiving region in response to receiving the excitation signal. The optical system further includes a detector configured to detect the emitted radiation and generates a signal indicative of a power of the detected radiation and a second set of optical components that directs the emitted radiation along a collection path to the detector. The optical system further includes a power meter that measures a power of the radiation emitted from the sample carrier receiving region and generates a signal indicative thereof.
Abstract:
A method for controlling a spectrometer for analyzing a product includes steps of: acquiring a measurement representative of the operation of a light source, determining, depending on the measurement, a value of supply current of the light source, and/or a value of integration time of light-sensitive cells of a sensor, disposed on a route of a light beam emitted by the light source and having interacted with a product to be analyzed, and if the integration time and/or supply current value is between threshold values, supplying the light source with a supply current corresponding to the determined supply current value, adjusting the integration time of a light-sensitive cell to the determined integration time value, and acquiring light intensity measurements supplied by the sensor, enabling a spectrum to be formed.