Abstract:
An adjustable power splitter includes: a power divider with an input and a first and second divider output; a first adjustable phase shifter and first adjustable attenuator series coupled to the first divider output and providing a first power output; a second adjustable phase shifter and second adjustable attenuator series coupled to the second divider output and providing a second power output; an interface; and a controller. The controller is configured to receive, via the interface, data indicating phase shifts to be applied by the first and second adjustable phase shifters and attenuation levels to be applied by the first and second adjustable attenuators, and to control, based on the data, the phase shifts and attenuation levels applied by the first and second adjustable phase shifters and the first and second adjustable attenuators.
Abstract:
A technology is described for adjusting repeater gain based on user equipment need. A downlink path of the repeater can be deactivated. A deactivated throughput value can be received from the UE for data received at the UE in a selected time period. The downlink amplification path of the repeater can be activated. An activated throughput value for data received at the UE in the selected time period can be received from the UE. A difference can be determined between the deactivated throughput value and the activated throughput value. A repeater gain value can be reduced or bypassed when the deactivated throughput value is greater than the activated throughput value by a selected threshold value.
Abstract:
In one example in accordance with the present disclosure, an antenna system is described. The antenna system includes an array of antennas. Each antenna emits electromagnetic waves and is presented with a load that is different from other antennas in the array. The antenna system also includes a control system. The control system includes a single transmitter to sequentially drive antenna sets, a switching device to select, for each activation period in an activation sequence, an antenna set to be driven, and a controller. The controller determines an actual power output of each antenna and generates an adjusted control signal for the single transmitter such that the output of each antenna is controlled to match a target power for that antenna, regardless of a load for the antenna.
Abstract:
Example embodiments provide a process that includes one or more of receiving an audio signal at a feedback compressor circuit, multiplying the received audio signal with a power feedback signal to create a product audio signal, wherein the feedback signal comprises a low-pass filtered signal, applying a power amplifier to the product audio signal, and providing the amplified product audio signal as an output signal to a speaker.
Abstract:
A receiver front end capable of receiving and processing intraband non-contiguous carrier aggregate (CA) signals using multiple low noise amplifiers (LNAs) is disclosed herein. A cascode having a “common source” input stage and a “common gate” output stage can be turned on or off using the gate of the output stage. A first switch is provided that allows a connection to be either established or broken between the source terminal of the input stage of each cascode. Further switches used for switching degeneration inductors, gate/sources caps and gate to ground caps for each legs can be used to further improve the matching performance of the invention.
Abstract:
Embodiments of circuits for use with an amplifier that includes multiple amplifier paths include a first circuit and a second circuit in parallel with the first circuit. The first circuit includes a first input coupled to a first power divider output, a first output coupled to a first amplifier path of the multiple amplifier paths, and a first adjustable phase shifter and a first attenuator series coupled between the first input and the first output. The second circuit includes a second input coupled to a second power divider output, a second output coupled to a second amplifier path of the multiple amplifier paths, and a second adjustable phase shifter coupled between the second input and the second output.
Abstract:
A close-down pop reduction system and a method for close-down pop reduction in an audio amplifier assembly are disclosed. The switching power conversion system comprises a forward path having a compensator and a switching power stage and a signal path from an output of a comparator in the switching power stage to a sequence control unit. The signal path includes a close-down timing circuit configured to provide a timing signal. The sequence control unit is configured to eliminate the input signal, increase the switch frequency of the close-down pop reduction system and disable the switching power stage at a moment in time within a PWM pulse of the switching power stage. Hereby, it is e.g. possible to minimize the audible pop during close-down of audio amplifier assemblies.
Abstract:
A receiver front end capable of receiving and processing intraband non-contiguous carrier aggregate (CA) signals using multiple low noise amplifiers (LNAs) is disclosed herein. A cascode having a “common source” input stage and a “common gate” output stage can be turned on or off using the gate of the output stage. A first switch is provided that allows a connection to be either established or broken between the source terminal of the input stage of each cascode. Further switches used for switching degeneration inductors, gate/sources caps and gate to ground caps for each legs can be used to further improve the matching performance of the invention.
Abstract:
A close-down pop reduction system and a method for close-down pop reduction in an audio amplifier assembly are disclosed. The switching power conversion system comprises a forward path having a compensator and a switching power stage and a signal path from an output of a comparator in the switching power stage to a sequence control unit. The signal path includes a close-down timing circuit configured to provide a timing signal. The sequence control unit is configured to eliminate the input signal, increase the switch frequency of the close-down pop reduction system and disable the switching power stage at a moment in time within a PWM pulse of the switching power stage. Hereby, it is e.g. possible to minimize the audible pop during close-down of audio amplifier assemblies.
Abstract:
Apparatus (301) for switchable attenuation of a differential input signal from a microphone includes positive and negative non-attenuating paths (406, 410) have n- and p-type MOSFETs (421, 422, 423, 424) in back-to-back configurations; positive and negative attenuating paths (405, 409) have n- and p-type MOSFETs (415, 416, 418, 419) in back-to-back configurations in combination with resistors; a gate driver (425) applies a drive signal of one polarity (QNEG) to gates of the n-type MOSFETs in the attenuating paths and the p-type MOSFETs in the non-attenuating paths, and a drive signal of opposite polarity (QPOS) to the gates of the p-type MOSFETs in the attenuating paths and the n-type MOSFETs in the non-attenuating paths; and the state of the MOSFETs depends on the drive signals at their gates, and thus the input signal may be routed via either the non-attenuating paths or the attenuating paths by controlling the drive signals.