Abstract:
A chip fuse includes a substrate, a fuse element extending on the substrate, and first and second wire leads coupled to the fuse element. Contact pads may extend over portions of the fuse element and establish electrical connection to the first and second leads. A conductive medium such as solder encircles the substrate to securely form a mechanical and electrical connection to the leads.
Abstract:
An electronic apparatus has an electronic component and a pin mount. The electronic component has a working surface and two pins protruding from the working surface and each pin being bent to form an L-shape with a proximal part and a distal part. The pin mount has a flat bottom, a rear, two through holes and two communicating recesses. The through holes are defined through the pin mount in parallel, are formed from the front to the rear and receiving the proximal parts of the pins. The communicating recesses are formed in parallel in the front from the through holes toward the bottom of the pin mount, communicate respectively with the through holes and receiving the distal parts of the pins. The pin mount immobilizes the electronic component to prevent the pins from being detached from the electronic component or the PCB to retain the lifetime of the pins.
Abstract:
A printed circuit board with a quartz crystal oscillator includes a mounting area for receiving the quartz crystal oscillator, two first vias, and two second vias. A copper foil is arranged on the mounting area. Pins of the quartz crystal oscillator are inserted into the first vias. The second vias are connected to a ground layer of the PCB and communicate with the copper foil, for transmitting noise of the quartz crystal oscillator to the ground layer of the PCB.
Abstract:
The invention relates to an electrical component with a base object (3), which comprises two insulating objects (1 and 2) with curved external surfaces, each having an external electrode (4 and 5) disposed on its face, in which a central electrode (7) is disposed along a shell surface in a central section (6) of the base object, and in which the central electrode (7) features a flat mounting surface (8) on the exterior of the component. The invention also relates to an arrangement of the component. Furthermore, the invention relates to a method for manufacturing the arrangement. Because of the flat mounting surface (8) on the central electrode (7), the component can be effectively prevented from rolling away from the surface of a printed circuit board (10). In addition, the holding surface (9) permits the suction holding of the component using a suction nozzle (11).
Abstract:
A printed circuit board and method for reducing the impedance within the reference path and/or saving space within the printed circuit board. In one embodiment of the present invention, a printed circuit board comprises a plurality of conductive layers. The printed circuit board further comprises two or more vias for interconnecting two or more conductive layers. The printed circuit board further comprises an electrical component embedded in a particular via between two conductive layers to reduce the impedance within the reference path and/or save space within the printed circuit board.
Abstract:
A monolithic inductor (10) comprises an elongated substrate having opposite distal ends (14) and (16), each end having an end cap extending from the opposite ends to support the substrate (12) in spaced relation from a PC board, the end caps being formed with non-mounting areas and a deflection area for preventing the substrate resting on the non-mounting area, a substantially steep side wall (16) on the substrate side of the end cap (14) at the non-mounting area, and an inclined ramp extending up to a top of the end cap on the substrate side substantially opposite the non-mounting area, an electrically conductive soldering band (30) extending partially around each end cap, each soldering band having a gap (34) at the non-mounting area for thereby reducing parasitic conduction in the band (30), and an electrically conductive layer formed on the substrate in a helical path extending between the opposite ends and in electrical contact with the conductive soldering bands (30) at the ramps (120).
Abstract:
A branch junction box containing a flexible printed circuit sheet includes circuit terminals and other parts which are easily mounted. A first insulation plate is provided on one of its faces, with a plurality of printed circuit terminals vertically fixed therethrough. On its other face, the first insulation plate carries a flexible printed circuit sheet, the printed circuit of which is electrically connected to the circuit terminals. The surface of the insulating plate facing the circuit terminals may be provided with bus bar wiring patterns and corresponding bus bar terminals. These circuit terminals and bus bar terminals are branch-connected to wiring harnesses in a proper and reliable way through connectors formed in the casing of the box.
Abstract:
A circuit board with electrical components in which the components are inserted with their insulated bodies into through bores of the circuit board, slightly protruding from the underside and top of the board, and having contact surfaces which are soldered to a strip conductor. The lower ends of the components terminate in a hemispherical cup or rounded conical tip and have at least one lower contact surface protruding into the strip conductor and soldered to it. The upper ends of the components comprise a plurality of upper contact surfaces insulated from each other and connected to a plurality of contact elements protruding from the component body. The contact elements are connected at a distance around the bores to the strip conductor on top of the circuit board by soldering paste.
Abstract:
A surface mountable miniature incandescent lamp assembly has an elongated substantially cylindrical glass envelope wherein a filament is contained in contact with metal members having glass-to-metal seals with the glass envelope. A substantial portion of the outer surface of the glass envelope is coated with a light reflective metal coating, with a non-coated elongated window transparent to light being left on the surface. The metal members extend axially to the outside from the envelope and, when mounted to a circuit board provide electric contact for the lamp. At least one of the end members includes a unique surface feature, such as a flat portion of an otherwise cylindrical surface, which is directionally coupled relative to the window of the glass envelope and which acts as a key or indexing surface for mounting the lamp assembly to the receiving surface (circuit board) with the window disposed in the desired direction.
Abstract:
A MELF (Metal Electrode Face Bonding Device) surge absorbing element which can be connected across a pair of input lines of an electronic device. The surge absorbing element is secured in electrical contact with the input lines by a conductive heat releasable adhering means, e.g., a solder. A spring is positioned in biased relationship against the surge absorbing element. When the surge absorbing element is subjected to overvoltages or overcurrents continuously across the input lines, the surge absorbing element heats up, which, in turn, heats the adhering means. When the temperature reaches a predetermined value, the adhering means releases its securement of the surge absorbing element, e.g., the solder melts, and no longer holds the element. When this occurs, the bias of the spring means positioned against the now unsecured surge absorbing element serves to move the element away from and out of electrical contact with the adhering means and, in turn, the input lines. This prevents further heating of the surge absorbing element.