Abstract:
An embedded electronic package includes a stretchable body that includes at least one electronic component, wherein each electronic component includes a back side that is exposed from the stretchable body; and a plurality of meandering conductors that are electrically connected to one or more of the electronic components. In some forms, the embedded electronic package includes a stretchable body that includes an upper surface and a lower surface, wherein the stretchable body includes at least one electronic component, wherein each electronic component is fully embedded in the stretchable body and the same distance from the upper surface of the stretchable body; and a plurality of meandering conductors that are electrically connected to one or more of the electronic components.
Abstract:
The subject matter of the present description relates to methods for the precise integration of microelectronic dice within a multichip package which substantially reduce or eliminate any misalign caused by the movement of the microelectronic dice during the integration process. These methods may include the use of a temporary adhesive in conjunction with a carrier having at least one recess for microelectronic die alignment, the use of a precision molded carrier for microelectronic die alignment, the use of magnetic alignment of microelectronic dice on a reusable carrier, and/or the use of a temporary adhesive with molding processes on a reusable carrier.
Abstract:
The subject matter of the present description relates to methods for the precise integration of microelectronic dice within a multichip package which substantially reduce or eliminate any misalign caused by the movement of the microelectronic dice during the integration process. These methods may include the use of a temporary adhesive in conjunction with a carrier having at least one recess for microelectronic die alignment, the use of a precision molded carrier for microelectronic die alignment, the use of magnetic alignment of microelectronic dice on a reusable carrier, and/or the use of a temporary adhesive with molding processes on a reusable carrier.
Abstract:
Embodiments of the present description relate to the field of fabricating microelectronic structures. The microelectronic structures may include a glass routing structure formed separately from a trace routing structure, wherein the glass routing structure is incorporated with the trace routing substrate, either in a laminated or embedded configuration. Also disclosed are embodiments of a microelectronic package including at least one microelectronic device disposed proximate to the glass routing structure of the microelectronic substrate and coupled with the microelectronic substrate by a plurality of interconnects. Further, disclosed are embodiments of a microelectronic structure including at least one microelectronic device embedded within a microelectronic encapsulant having a glass routing structure attached to the microelectronic encapsulant and a trace routing structure formed on the glass routing structure.
Abstract:
Low leakage thin film capacitors for decoupling, power delivery, integrated circuits, related systems, and methods of fabrication are disclosed. Such thin film capacitors include a titanium dioxide dielectric and one or more noble metal oxide electrodes. Such thin film capacitors are suitable for high voltage applications and provide low current density leakage.
Abstract:
Processes and structures resulting therefrom for the improvement of high speed signaling integrity in electronic substrates of integrated circuit packages, which is achieved with the formation of airgap structures within dielectric material(s) between adjacent conductive routes that transmit/receive electrical signals, wherein the airgap structures decrease the capacitance and/or decrease the insertion losses in the dielectric material used to form the electronic substrates.
Abstract:
Microelectronic assemblies, and related devices and methods, are disclosed herein. For example, in some embodiments, a microelectronic assembly may include: a first die having a first surface and an opposing second surface, first conductive contacts at the first surface of the first die, and second conductive contacts at the second surface of the first die; and a second die having a first surface and an opposing second surface, and first conductive contacts at the first surface of the second die; wherein the second conductive contacts of the first die are coupled to the first conductive contacts of the second die by interconnects, the second surface of the first die is between the first surface of the first die and the first surface of the second die, and a footprint of the first die is smaller than and contained within a footprint of the second die.
Abstract:
Embodiments may relate to a die such as an acoustic wave resonator (AWR) die. The die may include a first filter and a second filter in the die body. The die may further include an electromagnetic interference (EMI) structure that surrounds at least one of the filters. Other embodiments may be described or claimed.
Abstract:
Microelectronic assemblies, and related devices and methods, are disclosed herein. For example, in some embodiments, a microelectronic assembly may include a package substrate including a dielectric material having a first surface and an opposing second surface, a first material on at least a portion of the second surface, and a second material on at least a portion of the first material, wherein the second material has a different material composition than the first material.
Abstract:
Disclosed herein are microelectronic assemblies including direct bonding, as well as related structures and techniques. For example, in some embodiments, a microelectronic assembly may include a first microelectronic component and a second microelectronic component coupled to the first microelectronic component by a direct bonding region including metal contacts that are distributed non-uniformly. In some embodiments, a microelectronic assembly may include a first microelectronic component and a second microelectronic component coupled to the first microelectronic component by a direct bonding region, wherein the direct bonding region includes a first metal contact and a second metal contact, the first metal contact has a larger area than the second metal contact.