PLIABLE PRESSURE-SENDING FABRIC
    223.
    发明申请

    公开(公告)号:US20170234673A1

    公开(公告)日:2017-08-17

    申请号:US15583350

    申请日:2017-05-01

    Applicant: STC.UNM

    Inventor: Scott S. Sibbett

    CPC classification number: G06F3/0414 G01L1/205

    Abstract: A pliable pressure sensitive sensor device and method of making the same is provided. The sensor includes first and second pliable protective layers, which cover sets of conductive fibers that spatially separated by an electrically conductive pliable layer, which deforms in response to a pressure event. The fiber sets form a grid pattern and are in electrical communication with sets of electrical contacts located in predetermined locations along the fibers. In response to a pressure event in proximity to the contact, the pliable layer deforms and increases the amount of surface area in contact with an electrical contact whereby an electrical resistance at an individual electrical contact decreases in response to the pressure event.

    DETECTION OF BIOAGENTS USING A SHEAR HORIZONTAL SURFACE ACOUSTIC WAVE BIOSENSOR

    公开(公告)号:US20170184581A1

    公开(公告)日:2017-06-29

    申请号:US15411576

    申请日:2017-01-20

    Abstract: Viruses and other bioagents are of high medical and biodefense concern and their detection at concentrations well below the threshold necessary to cause health hazards continues to be a challenge with respect to sensitivity, specificity, and selectivity. Ideally, assays for accurate and real time detection of viral agents and other bioagents would not necessitate any pre-processing of the analyte, which would make them applicable for example to bodily fluids (blood, sputum) and man-made as well as naturally occurring bodies of water (pools, rivers). We describe herein a robust biosensor that combines the sensitivity of surface acoustic waves (SAW) generated at a frequency of 325 MHz with the specificity provided by antibodies and other ligands for the detection of viral agents. In preferred embodiments, a lithium tantalate based SAW transducer with silicon dioxide waveguide sensor platform featuring three test and one reference delay lines was used to adsorb antibodies directed against Coxsackie virus B4 or the negative-stranded category A bioagent Sin Nombre virus (SNV), a member of the genus Hantavirus, family Bunyaviridae, negative-stranded RNA viruses. Rapid detection (within seconds) of increasing concentrations of viral particles was linear over a range of order of magnitude for both viruses, although the sensor was approximately 50×104-fold more sensitive for the detection of SNV. For both pathogens, the sensor's selectivity for its target was not compromised by the presence of confounding Herpes Simplex virus type 1. The biosensor was able to detect SNV at doses lower than the load of virus typically found in a human patient suffering from hantavirus cardiopulmonary syndrome (HCPS). Further, in a proof-of-principle real world application, the SAW biosensor was capable of selectively detecting SNV agents in complex solutions, such as naturally occurring bodies of water (river, sewage effluent) without analyte pre-processing.

Patent Agency Ranking