Abstract:
The invention relates to a printed circuit board comprising capacitive and inductive elements. To arrange such a printed circuit board so that it has a smaller thickness and can be manufactured cost effectively, a printed circuit board is proposed having at least one dielectric layer, on the two side faces of which capacitor electrodes arranged opposite each other are positioned in a first area and two planar windings opposite each other are arranged in at least a second area next to the first area on the side faces of the electric layer.
Abstract:
In accordance with the disclosed embodiment of the present invention, there is provided a technique to control and manage where the currents flow produced by noise producing components such as transmitters, and how to specifically exclude them from critical areas, such as where noise sensitive components are disposed. Such noise sensitive components may include oscillators and other components. According to a disclosed example of the present invention, an electrically-isolated area at least partially surrounds one or more noise-sensitive components. As disclosed herein, a gap in the elongated area receives one or more traces such as power plane, ground plane and signal traces for the partially surrounded component or components.
Abstract:
There is provided a connector sheet which includes an insulation sheet substrate having a front surface and a rear surface opposing to the front surface, and electrically conductive members each passing through the sheet substrate along a thickness direction of the sheet substrate, and the front surface and the rear surface contain a thermoset resin, and have tackiness under a first condition and develop adhesiveness under a second condition which is different from the first condition.
Abstract:
A circuit board is described where the fiberglass fiber pattern as been modified than what is found in conventional FR4 circuit boards. In one embodiment, the sets of fiberglass fibers are disposed in a zig-zag or herringbone manner. In one use, when a pair of conductors are disposed onto or into the board, the material surrounding a first conductor tends to be similar to the material surrounding a second conductor. Doing so may reduce differential to common mode conversion between the conductors.
Abstract:
Transmission of electric and optical signal, realization of high-speed and high capacity of transmission of information signals. A base substrate section having an interconnect layer formed on an insulating substrate by a printed circuit process; a micro interconnect circuit section having a micro electrical interconnect layer which is finer than the interconnect layer of the base substrate section, formed on an insulating resin layer by a semiconductor process; and an optical interconnect circuit section adapted to transfer and/or receive an optical signal and provided with an optical wave-guide having an input section and an output section of a optical signal at opposite ends thereof; and at least a pair of optical elements composed of a light emitting device with a light emitting section thereof facing the input section and a photo detecting device with a photo detecting section thereof facing the output section are provided and the micro interconnect circuit section and the optical interconnect circuit section are mounted on the base substrate section.
Abstract:
A microwave circuit comprises a printed circuit board (PCB) on which is fabricated a circuit including passive components such as filters (40) formed by printed conductive patterns. In order to enhance the performance of the circuit, selected components such as filters are made with a greater precision on substrate material (41), such as alumina, having a higher dielectric constant than that of the printed circuit board material. The finished component is mounted on the printed circuit board and the conductive pattern is connected by wire bonds (48, 50) to microstrip tracks (51) of the printed circuit board.
Abstract:
In an electric connection box constituted by arranging a bus bar circuit board constituted by arranging a plurality of bus bars having at least two kinds of different potentials on an insulating board in a vertical direction, in bus bar arrangement in which the bus bar having low potential and the bus bar having high potential are contiguously installed in a horizontal direction, the bus bar having the low potential is arranged on an upper side of the bus bar having the high potential in the vertical direction.
Abstract:
An apparatus for reducing electromagnetic interference on signals being communicated through one or more communications conductors is disclosed. The apparatus of the present invention is preferably situated in a communications circuit having a first area for receiving one or more communications conductors and an intermediate ground, and a second area having a reference ground. The apparatus includes one or more first capacitors, where each first capacitor is coupled between a communications conductor and the intermediate ground, and a second capacitor coupled between the intermediate ground and the reference ground. In preferred embodiments, the first area is a telephone network voltage (TNV) area, the second area is a secondary extra low voltage (SELV) area, the first capacitors are regular high voltage capacitors, and the second capacitor is a Y capacitor.
Abstract:
A design for constructing an input circuit to receive and process an electrical signal, such as a voltage signal from a voltage source, where the input circuit has an extremely high resistance of at least 1011 ohms and is located on a printed circuit board. A first area of the printed circuit board carrying components of the input circuit is separated from a second area surrounding or contiguous to it by a channel-shaped recess to preserve the high resistance of the circuit even under operating conditions and at high relative humidity. The circuit is configured in such a way that the channel-shaped recess terminates in the interior of the printed circuit board and is extended in the direction of the thickness of the printed circuit board immediately up to a moisture-impermeable barrier layer which underlies the first area of the printed circuit board. The channel-shaped recess and the first area are filled and surrounded by a cohesive moisture-impermeable material.
Abstract:
A wireless receiving device of the present invention is so arranged that (i) a high-frequency circuit section is provided on a front surface of a printed board and (ii) a digital video signal processing section and a wireless LAN digital signal processing section are provided on a back surface of the printed board. Further, an earth pattern is provided in a middle position between the front and back surfaces of the printed board, so that (i) the high-frequency circuit section and (ii) the digital video signal processing section and the wireless LAN digital signal processing section are shielded from one another using electromagnetic shielding by the earth pattern. Thus, when members that are commonly used for the wireless LAN and for wireless video reception are formed on a single printed board in order to reduce the size of the printed board, it is possible to effectively reduce the lowering of signal quality caused by the noise.