Abstract:
Electrical contacts may be formed by forming dielectric liners along sidewalls of a dielectric structure, forming sacrificial liners over and transverse to the dielectric liners along sidewalls of a sacrificial structure, selectively removing portions of the dielectric liners at intersections of the dielectric liners and sacrificial liners to form pores, and at least partially filling the pores with a conductive material. Nano-scale pores may be formed by similar methods. Bottom electrodes may be formed and electrical contacts may be structurally and electrically coupled to the bottom electrodes to form memory devices. Nano-scale electrical contacts may have a rectangular cross-section of a first width and a second width, each width less than about 20 nm. Memory devices may include bottom electrodes, electrical contacts having a cross-sectional area less than about 150 nm2 over and electrically coupled to the bottom electrodes, and a cell material over the electrical contacts.
Abstract:
An array of elevationally-extending strings of memory cells, where the memory cells individually comprise a programmable charge storage transistor, comprises a substrate comprising a first region containing memory cells and a second region not containing memory cells laterally of the first region. The first region comprises vertically-alternating tiers of insulative material and control gate material. The second region comprises vertically-alternating tiers of different composition insulating materials laterally of the first region. A channel pillar comprising semiconductive channel material extends elevationally through multiple of the vertically-alternating tiers within the first region. Tunnel insulator, programmable charge storage material, and control gate blocking insulator are between the channel pillar and the control gate material of individual of the tiers of the control gate material within the first region. Conductive vias extend elevationally through the vertically-alternating tiers in the second region. An elevationally-extending wall is laterally between the first and second regions. The wall comprises the programmable charge storage material and the semiconductive channel material. Other embodiments and aspects, including method, are disclosed.
Abstract:
Semiconductor substrates with unitary vias and via terminals, and associated systems and methods are disclosed. A representative system in accordance with a particular embodiment includes a semiconductor substrate having an opening that includes a generally cylindrical portion with a generally smooth, uniform surface. The opening also includes a terminal portion extending transversely to the cylindrical portion and intersecting. A single, uniform, homogeneous volume of conductive material is disposed in both the cylindrical portion and the terminal portion of the opening, the conductive material forming a conductive path in the cylindrical portion and at least a portion of a conductive terminal in the terminal portion. The conductive terminal has a cross-section with generally flat walls aligned with crystal planes of the semiconductor substrate material. The conductive terminal projects away from the semiconductor substrate.
Abstract:
A method used in forming a vertical string of memory cells and a conductive via comprises forming a first lower opening and a second lower opening into a lower material. A first material is formed within the first and second lower openings. An upper material is formed above the lower material and above the first material in the first and second lower openings. A first upper opening is formed through the upper material to the first material in the first lower opening. At least a majority of the first material is removed from the first lower opening through the first upper opening and channel material is formed within the first lower and first upper openings for the vertical string of memory cells being formed. After forming the channel material, a second upper opening is formed through the upper material to the first material in the second lower opening. Conductive material of the conductive via is formed within the second upper opening. Structure embodiments independent of method of formation are disclosed.
Abstract:
Some embodiments include an integrated structure having a conductive material, a select device gate material over the conductive material, and vertically-stacked conductive levels over the select device gate material. Vertically-extending monolithic channel material is adjacent the select device gate material and the conductive levels. The monolithic channel material contains a lower segment adjacent the select device gate material and an upper segment adjacent the conductive levels. A first vertically-extending region is between the lower segment of the monolithic channel material and the select device gate material. The first vertically-extending region contains a first material. A second vertically-extending region is between the upper segment of the monolithic channel material and the conductive levels. The second vertically-extending region contains a material which is different in composition from the first material.
Abstract:
A method of forming a non-volatile resistive oxide memory cell includes forming a first conductive electrode of the memory cell as part of a substrate. Metal oxide-comprising material is formed over the first conductive electrode. Etch stop material is deposited over the metal oxide-comprising material. Conductive material is deposited over the etch stop material. A second conductive electrode of the memory cell which comprises the conductive material received is formed over the etch stop material. Such includes etching through the conductive material to stop relative to the etch stop material and forming the non-volatile resistive oxide memory cell to comprise the first and second conductive electrodes having both the metal oxide-comprising material and the etch stop material therebetween. Other implementations are contemplated.
Abstract:
Some embodiments include an integrated structure having a conductive material, a select device gate material over the conductive material, and vertically-stacked conductive levels over the select device gate material. Vertically-extending monolithic channel material is adjacent the select device gate material and the conductive levels. The monolithic channel material contains a lower segment adjacent the select device gate material and an upper segment adjacent the conductive levels. A first vertically-extending region is between the lower segment of the monolithic channel material and the select device gate material. The first vertically-extending region contains a first material. A second vertically-extending region is between the upper segment of the monolithic channel material and the conductive levels. The second vertically-extending region contains a material which is different in composition from the first material.
Abstract:
An array of memory cells includes buried access lines having conductively doped semiconductor material. Pillars extend elevationally outward of and are spaced along the buried access lines. The pillars individually include a memory cell. Outer access lines are elevationally outward of the pillars and the buried access lines. The outer access lines are of higher electrical conductivity than the buried access lines. A plurality of conductive vias is spaced along and electrically couple pairs of individual of the buried and outer access lines. A plurality of the pillars is between immediately adjacent of the vias along the pairs. Electrically conductive metal material is directly against tops of the buried access lines and extends between the pillars along the individual buried access lines. Other embodiments, including method, are disclosed.
Abstract:
Microelectronic devices with through-silicon vias and associated methods of manufacturing such devices. One embodiment of a method for forming tungsten through-silicon vias comprising forming an opening having a sidewall such that the opening extends through at least a portion of a substrate on which microelectronic structures have been formed. The method can further include lining the sidewall with a dielectric material, depositing tungsten on the dielectric material such that a cavity extends through at least a portion of the tungsten, and filling the cavity with a polysilicon material.
Abstract:
Methods of pitch doubling of asymmetric features and semiconductor structures including the same are disclosed. In one embodiment, a single photolithography mask may be used to pitch double three features, for example, of a DRAM array. In one embodiment, two wordlines and a grounded gate over field may be pitch doubled. Semiconductor structures including such features are also disclosed.