Abstract:
A system for receiving at least two data streams and providing a single input data stream to a MIPI's CSI Tx is disclosed. The two received data streams are written into respective data buffers. The system includes a control logic configured to control reading of data stored in the buffers to a multiplexer, the read-side clock being a multiple of a frequency of a fixed frequency clock. The control logic is further configured to control the multiplexer to combine data read from each buffer that corresponds to a complete unit of data into a separate portion and multiplex the separate portions into the input data stream. In this manner, two data streams may be transmitted using a single CSI Tx. When the two data streams are received by the system from an APIX interface, the system provides a bridge between the APIX interface and MIPI's CSI Tx.
Abstract:
An input stage to an analog to digital converter (ADC) includes at least one sampling capacitor (SC) for sampling an input signal in acquire phases, a capacitive gain amplifier (CGA) for providing the input signal to the SC, and bandwidth control means. The bandwidth control means is configured to ensure that the SC has a first bandwidth during a first part of an acquire phase and has a second bandwidth during a subsequent, second, part of said acquire phase, the second bandwidth being smaller than the first. In this manner, first, the input signal is sampled at a higher, first, bandwidth allowing to take advantage of using a high-bandwidth CGA to minimize settling error on the SC, and, next, during a second part of the same acquire phase, the input signal is sampled at a lower, second, bandwidth advantageously decreasing noise resulting from the use of a high-bandwidth CGA.
Abstract:
An LIF receiver includes a receiver path comprising: a mixer for mixing a received RF signal with a local oscillator signal to provide an IF signal at a lower frequency than the received RF signal, a bandpass filter for filtering the IF signal, a PGA for amplifying the filtered IF signal, an ADC for converting the amplified filtered IF signal to a digital signal, a converter for converting the digital signal to a baseband digital signal, and an AGC for setting a gain of the PGA in response to a magnitude of the received RF signal. A programmable DC signal source injects a programmed DC offset signal into the amplified filtered IF signal converted by the ADC, and a signal sensor, operatively connected to the receiver path after the PGA, determines a polarity of PGA signal output for a programmed DC offset signal. A controller determines a programmed DC offset signal minimizing a magnitude of the baseband signal in the absence of a received RF signal for at least one gain setting of the PGA.
Abstract:
The present invention relates to power conversion apparatus (40) configured to receive a high voltage alternating current (AC) signal at an input (42, 44) and to provide in dependence thereon a low voltage direct current (DC) signal from an output stage (58, 60). The power conversion apparatus (40) comprises a main path comprising a high voltage capacitor (46) in series with the input. The power conversion apparatus (40) also comprises a first path operative to carry current carried by the main path in at least one of a positive going part and a negative going part of the high voltage alternating current signal and a second path operative to carry current carried by the main path in a positive going part and a negative going part of the high voltage alternating current signal. The power conversion apparatus further comprises first and second switches (52, 54) which are operative to determine when a respective one of the first and second paths carries current. In the power conversion apparatus, the output stage (58, 60) receives current flowing in the first path and at least one of the first and second switches (52, 54) is operable in dependence on a control signal derived from the low voltage direct current signal.
Abstract:
Aspects of this disclosure relate to compensating for a relatively large offset in a signal generated by a sensor, such as a pressure sensor and/or a resistive bridge based sensor. Such offset compensation can include applying an offset correction signal generated by a configurable voltage reference, such as a voltage mode digital-to-analog converter (DAC), to an input of an amplifier included in an instrumentation amplifier to compensate for the offset of the signal generated by the sensor.
Abstract:
A clock and data recovery (CDR) system may use one or more clock signals in sync with recovered data rate. By accumulating a dithering tuning counter value at a data oversampling rate, a plurality of single bit signals at multiples of the recovered data rate and in sync with the recovered data rate can be accurately generated while utilizing the full range of the accumulator. This plurality of clock signals can be used in various modules in the CDR system and other modules in a transceiver system incorporating the CDR system.
Abstract:
A transistor is provided in which an elongate drain region has end portions formed in parts of the transistor where features of the transistor structure have been modified or omitted. These structures lessen the current flow or electric field gradients at the end portions of the drain. This provides a transistor that has improved on-state breakdown performance without sacrificing off state breakdown performance.
Abstract:
Apparatus and methods for reducing glitches in digital step attenuators are disclosed. By configuring a multi-bit DSA such that an attenuation control block changes a plurality of control signals in a manner sequencing individual switches of the DSA, glitches can be reduced and RF signal behavior can be enhanced. The sequence, based upon a unit time delay, causes the transient attenuation value to be bounded between a minimum and maximum and can improve settling time.
Abstract:
In contrast to some existing techniques, a calibration technique compares multiple outputs which may be, for example, successive or different outputs from the digital-to-analog converter (DAC) in an analog environment and determines differences between at least two outputs in an analog environment. A feedback signal is provided in the digital environment to provide an internal or self-calibration regime. The digital feedback signal is provided to a digital signal processing (DSP) component of the calibration circuitry which uses the feedback signal to determine appropriate input codes to provide to the DAC. The same DAC can be used for both signal generation and feedback DAC purposes, and this provides a self-calibration of the DAC performance which is typically related to the integral non-linearity (INL) characteristics of the DAC transfer function.
Abstract:
Aspects of this disclosure relate to a termination circuit configured to mitigate crosstalk from a radio frequency (RF) input/output (I/O) path to a second I/O path, such as a digital I/O path. Such crosstalk can be due to coupling between adjacent bond wires, for example. The termination circuit can include a low impedance loss path, such as a series RC shunt circuit. According to certain embodiments, an electrostatic discharge (ESD) protection circuit can be in parallel with the termination circuit.