Abstract:
Technology for adjusting a receiver timing of a wireless device in a Coordinated MultiPoint (CoMP) system is disclosed. One method can include the wireless device receiving a plurality of node specific reference signals (RSs) from a plurality of cooperating nodes in a coordination set of the CoMP system. The coordination set includes at least two cooperating nodes. The wireless device can estimate a composite received RS timing from a plurality of received RS timings generated from the plurality of node specific RSs. The received RS timings represent timings from the at least two cooperating nodes. The wireless device can adjust the receiver timing based on the composite received RS timing. A node specific RS can include a channel-state information reference signal (CSI-RS).
Abstract:
Embodiments for providing frequency offset measurement enhancements are generally described herein. In some embodiments, user equipment is informed of a configuration of a first reference signal and a configuration of a second reference signal. The first reference signal is provided to user equipment for performing channel estimation. A second reference signal for estimating carrier frequency offset is provided, wherein the second reference signal is co-located with the first reference signal. A carrier frequency offset estimation is calculated based on the co-located first and second reference signals.
Abstract:
Generally, this disclosure provides devices, systems and methods for Cross-Carrier Quasi Co-Location Signaling in an NCT Wireless Network. A UE device may include a receiver circuit to receive a QCL signaling message from a primary cell, the QCL signaling message for a configured secondary cell to identify a primary or one or more secondary cells that are Quasi Co-located with the secondary cell for which the message is provided. The UE device may also include a QCL signal decoding module to decode the QCL signaling message and to determine QCL synchronization parameters. The UE device may further include a synchronization module to synchronize the UE with the primary or one or more secondary cells based on the QCL synchronization parameters obtained from the QCL message received from the primary cell.
Abstract:
Technology for adjusting a receiver timing of a wireless device in a Coordinated MultiPoint (CoMP) system is disclosed. One method can include the wireless device receiving a plurality of node specific reference signals (RSs) from a plurality of cooperating nodes in a coordination set of the CoMP system. The coordination set includes at least two cooperating nodes. The wireless device can estimate a composite received RS timing from a plurality of received RS timings generated from the plurality of node specific RSs. The received RS timings represent timings from the at least two cooperating nodes. The wireless device can adjust the receiver timing based on the composite received RS timing. A node specific RS can include a channel-state information reference signal (CSI-RS).
Abstract:
User Equipment (UE) and methods for antenna port quasi co-location signaling in coordinated multi-point (CoMP) operations are generally described herein. In some embodiments, one or more downlink channels are at least partially offloaded from a serving Evolved Node-B (eNB) to one or more neighbor eNBs. The UE may receive signaling from the serving eNB to indicate a reference signal of a neighbor eNB to use for estimation of one or more large-scale physical-layer parameters associated with the one or more downlink channels provided by one of more of the neighbor eNB. The UE may estimate the one or more large-scale physical-layer parameters based on receipt of the indicated reference signal from the neighbor and serving eNBs. The UE may also apply the estimated one or more large-scale physical-layer parameters for processing the one or more downlink channels from the neighbor and serving eNBs.
Abstract:
Embodiments of the present disclosure describe techniques and configurations for handling interference measurements in a wireless communication network. An apparatus may include computer-readable media having instructions and processors coupled with the computer-readable media and configured to execute the instructions to identify, for a serving eNB, a neighboring eNB for which signal interference measurements are to be performed by one or more wireless devices served by the serving eNB, and request that the neighboring eNB transmit typical interference signals within data units which are configured for, and may or may not have, a scheduled physical downlink shared channel transmission. The wireless devices may be configured to perform the signal interference measurements based at least in part on the typical interference signals, which may include non-zero-power signals or zero-power signals. Other embodiments may be described and claimed.
Abstract:
Technology is discussed for extending frequency and time based approaches, such as Inter-Cell Interference Coordination (ICIC) and enhanced ICIC (eICIC), to interference mitigation for clusters within a Wireless Wide Area Network (WWAN) of transmission points with a common transmission point identity. Multiple transmission power messages correlated to different transmission point characteristics can be configured among multiple transmission points sharing the same transmission point identity. These multiple transmission power messages can be used to coordinate transmissions from adjacent transmission points on differing frequencies. Additionally, new sets of reference signals can be configured to correlate to different transmission point characteristics. These new, correlated reference signals can be used to decouple measurements used to provide feedback to one set of transmission points from reference signals transmitted by another set of transmission points with the same transmission point identity.