Abstract:
The present invention concerns ink for printing on ceramic surfaces such as glass, which contains glass frits for silica nanoparticles and optionally a pigment, and is suitable for ink jet printing.
Abstract:
The present invention is related to the field of compartmentalized libraries of genetic elements and the selection of biologically active molecules and the genes encoding same from said libraries. The selection assay of the invention utilizes water-in-oil emulsions and is particularly advantageous in applications in the field of directed-evolution, as exemplified herein for selection of protein inhibitors of DNA nucleases.
Abstract:
The present invention generally relates to safe and stable sunscreen compositions comprising of at least one sunscreen active ingredient in the form of an inert sol-gel microcapsules encapsulating ultraviolet absorbing compounds in any acceptable cosmetic vehicle. The composition according to the present invention can comprise several ultraviolet absorbers that may be encapsulated in the same sol-gel microcapsule or in different capsules. The encapsulation of the ultraviolet absorbers reduces or even prevents the contact between the sunscreen compounds and the human tissue, thus reducing various adverse effects that are associated with the use of sunscreens, such as photoallergy and phototoxicity, and makes the composition safer for use. The encapsulation also reduces or even prevents cross reactivity between the sunscreen compounds and the packaging material and between the sunscreen compounds and any other component present in the composition, thus enhance the compositions stability. The hydophobicity/hydrophilicity character of the sol-gel microcapsules can be controlled by selecting suitable sol-gel precursors and suitable reaction conditions and can be chosen to be compatible with the cosmetic vehicle to be used in the sunscreen composition, thus, the present invention facilitates an easy incorporation of the composite sol-gel encapsulated sunscreen in all types of cosmetic vehicles including oil free compositions, with no necessary steps of heating or high shear forces. The sunscreen compositions of the present invention can comprise any acceptable UVA and/or UVB absorbing compounds at any desired ratio to obtain a desired accumulative ultraviolet screening spectrum.
Abstract:
The invention provides a process for the preparation of long-chain alkyl glycosides, comprising reacting a glucose-containing reactant and a C.sub.8 -C.sub.18 fatty alcohol in the presence of a glucosidase and a reaction promoter effective to promote the formation of the alkyl glycoside when the promoter is present in an amount of less than about 50 wt % of the total reaction mixture.
Abstract:
The new pharmaceutical and diagnostic compositions comprise antibody-aggregates and hydrophobic drug or marker molecules. The drug or marker molecules are solubilized inside micelle-like antibody-aggregates. In a process for preparing such types of compositions, hydrophobic residues are attached to the antibodies in the presence of a surface active agent. After removal of this agent the hydrophobic drug or marker molecules are solubilized inside the resulting antibody aggregates. A method for targeting molecules towards specific cells and sites within a living body is also disclosed.
Abstract:
The invention provides processes for the manufacture of conductive transparent films and electronic or optoelectronic devices comprising same.
Abstract:
The invention relates to a method for preparing an aqueous-based dispersion of metal nanoparticles comprising: (a) providing an aqueous suspension of a metal salt; (b) pre-reducing the metal salt suspension by a water soluble polymer capable of metal reduction to form a metal nuclei; and (c) adding a chemical reducer to form metal nanoparticles in dispersion. The invention further relates to aqueous-based dispersions of metal nanoparticles, and to compositions such as ink comprising such dispersions.
Abstract:
Provided is a composition including a plurality of multi-metallic nanoparticles each consisting essentially of a core including at least one first metal (Me1) and a continuous shell including atoms of at least one second metal (Me2). Optionally, the continuous shell of Me2 atoms protects the Me1 atoms from oxidation at all temperatures less than 150° C.