Abstract:
A photosensitive polyimide composition; the composition comprises a base agent and a curing agent comprising a photoinitiator. By applying an aliphatic diamine monomer, which has a long carbon chain, and a grafting monomer, which has a main carbon chain having a double bond and an epoxy group at two ends respectively, to a method of making the base agent, a mixture of the base agent and the curing agent can be screen printed to form a photosensitive polyimide film on a copper foil. Also, the photosensitive polyimide film can be exposed under low exposure energy, and can be developed to a solder-resistant polyimide thin film by a weak alkaline developer after exposed. In addition, the solder-resistant polyimide thin film has low dielectric constant, low dielectric loss, good flame resistance, good solder resistance, and good pencil hardness. Accordingly, the photosensitive polyimide composition is applicable to high density flexible printed circuit boards.
Abstract:
An infrared absorption film includes a polymer resin substrate, a polymer dispersant and an infrared absorption material. The infrared absorption material has a plurality of tungsten oxide and/or composite tungsten oxide nanoparticles dispersed in the polymer resin substrate by the polymer dispersant, wherein a weight ratio of the polymer dispersant to the infrared absorption material is between 0.3 and 0.6.
Abstract:
A thermally conductive encapsulate comprising a thermally conductive composite layer having a thermal conductivity of 0.5 W/m*K to 8 W/m*K and an adhesive resin layer having a thermal conductivity of 0.05 W/m*K to 0.4 W/m*K is provided. A percentage of a thickness of the adhesive resin layer relative to a total thickness of the thermally conductive encapsulate ranges from 0.1% to 10%, and the thermally conductive encapsulate has an overall thermal impedance less than 0.72° C.-in2/W. Accordingly, the thermally conductive encapsulate not only provides sealing, insulating and adhesive properties, but also effectively dissipates the heat to the environment without increasing the thickness or volume of the solar cell module and without modifying the original encapsulation process, and thereby enhancing the solar cell module's conversion efficiency and increasing its power output.
Abstract:
A polyimide polymer is provided. The polyimide polymer includes a repeating unit represented by formula 1. In formula 1, Ar is a tetravalent organic group derived from a tetracarboxylic dianhydride containing an aliphatic structure, and A includes and at least one divalent organic group derived from an aromatic group-containing diamine other than
Abstract:
An electromagnetic shielding film includes an insulation layer, and an electromagnetic shielding layer arranged at one side of the insulation layer. The electromagnetic shielding layer includes a polymer substrate and an electromagnetic shielding material. The polymer substrate has epoxy structures. The electromagnetic shielding material has a plurality of aculeate electromagnetic shielding microparticles dispersed in the polymer substrate.
Abstract:
An insulation film of a signal transmission line includes a substrate layer, and a bonding layer arranged on the substrate layer for directly covering metal conductors of the signal transmission line, wherein the bonding layer is made of a polyolefin copolymer resin or a polyolefin resin mixture.
Abstract:
A method of making a thermally curable solder-resistant ink, which comprises the following steps: polymerizing an aliphatic diamine monomer having a long carbon chain, an aromatic dianhydride monomer, an aromatic diamine monomer having a carboxylic acid group, and an anhydride monomer having a carboxylic acid group in an aprotic solvent to obtain a polyamine acid; cyclizing the polyamine acid to obtain a polyimide; and mixing the polyimide and a curing agent to obtain the thermally curable solder-resistant ink. By the steps mentioned above, the thermally curable solder-resistant ink made from the method has a dielectric constant less than 3.00 and a dielectric loss less than 0.01 and thereby is applicable to high frequency electronic equipments. Also, the thermally curable solder-resistant ink has good electrical properties, folding endurance, solder resistance, warpage resistance, flame resistance, acid endurance, alkali endurance, good solvent resistance and low water absorption.
Abstract:
The near-infrared radiation absorbing masterbatch provided is prepared by melt-extruding a mixture comprising near-infrared radiation absorbing particles and a first polymer. The particles have a near-infrared absorption at a wavelength ranging from 0.7 μm to 2 μm and a far-infrared emissivity equal to or more than 0.85. The near-infrared light radiated by the particles has a wavelength ranging from 2 μm to 22 μm. Accordingly, the product made from the masterbatch, such as the near-infrared radiation absorbing fiber, plate, or film can not only absorb sunlight and store heat, but also radiate far-infrared light. Hence, the product has a thermal effect for keeping the human body warm and can serve as indoor and outdoor heat storing products at the same time.