摘要:
A method for forming a porous dielectric material layer in an electronic structure and the structure formed are disclosed. In the method, a porous dielectric layer in a semiconductor device can be formed by first forming a non-porous dielectric layer, then partially curing, patterning by reactive ion etching, and final curing the non-porous dielectric layer at a higher temperature than the partial curing temperature to transform the non-porous dielectric material into a porous dielectric material, thus forming a dielectric material that has a low dielectric constant, i.e. smaller than 2.6. The non-porous dielectric material may be formed by embedding a thermally stable dielectric material such as methyl silsesquioxane, hydrogen silsesquioxane, benzocyclobutene or aromatic thermoset polymers with a second phase polymeric material therein such that, at the higher curing temperature, the second phase polymeric material substantially volatilizes to leave voids behind forming a void-filled dielectric material.
摘要:
A novel air-gap-containing interconnect wiring structure is described incorporating a solid low-k dielectric in the via levels, and a composite solid plus air-gap dielectric in the wiring levels. Also provided is a method for forming such an interconnect structure. The method is readily scalable to interconnect structures containing multiple wiring levels, and is compatible with Dual Damascene Back End of the Line (BEOL) processing.
摘要:
A semiconductor device containing a diffusion barrier layer is provided. The semiconductor device includes at least a semiconductor substrate containing conductive metal elements; and, a diffusion barrier layer applied to at least a portion of the substrate in contact with the conductive metal elements, the diffusion barrier layer having an upper surface and a lower surface and a central portion, and being formed from silicon, carbon, nitrogen and hydrogen with the nitrogen being non-uniformly distributed throughout the diffusion barrier layer. Thus, the nitrogen is more concentrated near the lower and upper surfaces of the diffusion barrier layer as compared to the central portion of the diffusion barrier layer. Methods for making the semiconductor devices are also provided.
摘要:
A method for forming a porous dielectric material layer in an electronic structure and the structure formed are disclosed. In the method, a porous dielectric layer in a semiconductor device can be formed by first forming a non-porous dielectric layer, then partially curing, patterning by reactive ion etching, and final curing the non-porous dielectric layer at a higher temperature than the partial curing temperature to transform the non-porous dielectric material into a porous dielectric material, thus achieving a dielectric material that has significantly improved dielectric constant, i.e. smaller than 2.6. The non-porous dielectric material may be formed by embedding a thermally stable dielectric material such as methyl silsesquioxane, hydrogen silsesquioxane, benzocyclobutene or aromatic thermoset polymers with a second phase polymeric material therein such that, at the higher curing temperature, the second phase polymeric material substantially volatilizes to leave voids behind forming a void-filled dielectric material.
摘要:
A microelectromechanical system (MEMS) resonator or filter including a first conductive layer, one or more electrodes patterned in the first conductive layer which serve the function of signal input, signal output, or DC biasing, or some combination of these functions, an evacuated cavity, a resonating member comprised of a lower conductive layer and an upper structural layer, a first air gap between the resonating member and one or more of the electrodes, an upper membrane covering the cavity, and a second air gap between the resonating member and the upper membrane.
摘要:
A design structure including design data describing a semiconductor structure. The semiconductor structure includes a first semiconductor chip and a second semiconductor chip. The first semiconductor chip is on top of and bonded to the second semiconductor chip. The first and second semiconductor chips include a first and a second electric nodes. The second semiconductor chip further includes a first comparing circuit. The semiconductor structure further includes a first coupling via electrically connecting the first electric node of the first semiconductor chip to the first comparing circuit of the second semiconductor chip. The first comparing circuit is capable of (i) receiving an input signal from the second electric node directly, (ii) receiving an input signal from the first electric node indirectly through the first coupling via, and (iii) asserting a first mismatch signal in response to the input signals from the first and second electric nodes being different.
摘要:
A double-sided integrated circuit chips, methods of fabricating the double-sided integrated circuit chips and design structures for double-sided integrated circuit chips. The method includes removing the backside silicon from two silicon-on-insulator wafers having devices fabricated therein and bonding them back to back utilizing the buried oxide layers. Contacts are then formed in the upper wafer to devices in the lower wafer and wiring levels are formed on the upper wafer. The lower wafer may include wiring levels. The lower wafer may include landing pads for the contacts. Contacts to the silicon layer of the lower wafer may be silicided.
摘要:
A semiconductor structure and method of fabricating the structure. The method includes removing the backside silicon from two silicon-on-insulator wafers having devices fabricated therein and bonding them back to back utilizing the buried oxide layers. Contacts are then formed in the upper wafer to devices in the lower wafer and wiring levels are formed on the upper wafer. The lower wafer may include wiring levels. The lower wafer may include landing pads for the contacts. Contacts to the silicon layer of the lower wafer may be silicided.
摘要:
A PCM cell structure comprises a first electrode, a phase change element, and a second electrode, wherein the phase change element is inserted in between the first electrode and the second electrode and only the peripheral edge of the first electrode contacts the phase change element thereby reducing the contact area between the phase change element and the first electrode and thereby increasing the current density through the phase change element and effectively inducing the phase change at lower levels of current and reduced programming power.
摘要:
Methods are provided for fabricating semiconductor IC (integrated circuit) chips having high-Q on-chip capacitors formed on the chip back-side and connected to integrated circuits on the chip front-side using through-wafer interconnects. In one aspect, a semiconductor device includes a semiconductor substrate having a front side, a back side, and a buried insulating layer interposed between the front and back sides of the substrate. An integrated circuit is formed on the front side of the semiconductor substrate, an integrated capacitor is formed on the back side of the semiconductor substrate, and an interconnection structure is formed through the buried insulating layer to connect the integrated capacitor to the integrated circuit.