Abstract:
Embodiments of the present disclosure generally relate to a semiconductor device including layers of group III-V semiconductor materials. In one embodiment, the semiconductor device includes a phosphorous containing layer deposited on a silicon substrate, wherein a lattice mismatch between the phosphorous containing layer and the silicon substrate is less than 5%, a group III-V compound nucleation layer deposited on the phosphorous containing layer at a first temperature, the group III-V compound nucleation layer having a first thickness, a group III-V compound transition layer deposited on the group III-V compound nucleation layer at a second temperature higher than the first temperature, the group III-V compound transition layer having a second thickness larger than the first thickness, and the group III-V compound nucleation layer is different from the group III-V compound transition layer, and an active layer deposited on the group III-V compound transition layer.
Abstract:
Native oxides and residue are removed from surfaces of a substrate by performing a multiple-stage native oxide cleaning process. In one example, the method for removing native oxides from a substrate includes supplying a first gas mixture including an inert gas onto a surface of a material layer disposed on a substrate into a first processing chamber, wherein the material layer is a III-V group containing layer for a first period of time, supplying a second gas mixture including an inert gas and a hydrogen containing gas onto the surface of the material layer for a second period of time, and supplying a third gas mixture including a hydrogen containing gas to the surface of the material layer while maintaining the substrate at a temperature less than 550 degrees Celsius.
Abstract:
Embodiments of the present disclosure relate to semiconductor devices such as transistors used for amplifying or switching electronic signals. In one embodiment, a first trench is formed in a dielectric layer formed on a substrate to expose a surface of the substrate, a multi-stack layer structure is formed within the first trench, and a third semiconductor compound layer is formed on the second semiconductor compound layer, wherein the second semiconductor compound layer has an etching resistance against an etchant lower than that of the first and third semiconductor compound layers, a second trench is formed in the dielectric layer to partially expose at least the second semiconductor compound layer and the third semiconductor compound layer, and the second semiconductor compound layer is selectively removed so that the first semiconductor compound layer is isolated from the third semiconductor compound layer by an air gap.
Abstract:
Implementations of the present disclosure generally relate to methods and apparatuses for epitaxial deposition on substrate surfaces. More particularly, implementations of the present disclosure generally relate to an integrated system for processing N-type metal-oxide semiconductor (NMOS) devices. In one implementation, a cluster tool for processing a substrate is provided. The cluster tool includes a pre-clean chamber, an etch chamber, one or more pass through chambers, one or more outgassing chambers, a first transfer chamber, a second transfer chamber, and one or more process chambers. The pre-clean chamber and the etch chamber are coupled to a first transfer chamber. The one or more pass through chambers are coupled to and disposed between the first transfer chamber and the second transfer chamber. The one or more outgassing chambers are coupled to the second transfer chamber. The one or more process chambers are coupled to the second transfer chamber.
Abstract:
A device comprising Si:As source and drain extensions and Si:As or Si:P source and drain features formed using selective epitaxial growth and a method of forming the same is provided. The epitaxial layers used for the source and drain extensions and the source and drain features herein are deposited by simultaneous film formation and film etching, wherein the deposited material on the monocrystalline layer is etched at a slower rate than deposition material deposited on non-monocrystalline location of a substrate. As a result, an epitaxial layer is deposited on the monocrystalline surfaces, and a layer is not deposited on non-monocrystalline surfaces of the same base material, such as silicon.
Abstract:
Methods for forming semiconductor devices, such as FinFETs, are provided. In one embodiment, a method for forming a FinFET device includes removing a portion of each fin of a plurality of fins, and a remaining portion of each fin is recessed from a dielectric surface. The method further includes forming a feature on the remaining portion of each fin, filling gaps formed between adjacent features with a dielectric material, removing the features, and forming a fill material on the remaining portion of each fin. Because the shape of the features is controlled, the shape of the fill material can be controlled.
Abstract:
Implementations described herein generally provide a method of processing a substrate. Specifically, the methods described are used for cleaning and etching source/drain regions on a silicon substrate in preparation for precise Group IV source/drain growth in semiconductor devices. Benefits of this disclosure include precise fin size control in devices, such as 10 nm FinFET devices, and increased overall device yield. The method of integrated clean and recess includes establishing a low pressure processing environment in the processing volume, and maintaining the low pressure processing environment while flowing a first gas over a substrate in a processing volume, depositing a salt on the substrate, heating the processing volume to greater than 90° C., purging the processing volume with a second inert gas, and recessing a source/drain region disposed on the substrate.
Abstract:
Implementations disclosed herein relate to methods for controlling substrate outgassing of hazardous gasses after an epitaxial process. In one implementation, the method includes providing a substrate comprising an epitaxial layer into a transfer chamber, wherein the transfer chamber has an ultraviolet (UV) lamp module disposed adjacent to a top ceiling of the transfer chamber, flowing an oxygen-containing gas into the transfer chamber through a gas line of the transfer chamber, flowing a non-reactive gas into the transfer chamber through the gas line of the transfer chamber, activating the UV lamp module to oxidize residues or species on a surface of the substrate to form an outgassing barrier layer on the surface of the substrate, ceasing the flow of the oxygen-containing gas and the nitrogen-containing gas into the transfer chamber, pumping the transfer chamber, and deactivating the UV lamp module.
Abstract:
Implementations disclosed herein relate to methods for controlling substrate outgassing. In one implementation, the method includes removing oxides from an exposed surface of a substrate in an inductively coupled plasma chamber, forming an epitaxial layer on the exposed surface of the substrate in an epitaxial deposition chamber, and performing an outgassing control of the substrate by subjecting the substrate to a first plasma formed from a first etch precursor in the inductively coupled plasma chamber at a first chamber pressure, wherein the first etch precursor comprises a hydrogen-containing precursor, a chlorine-containing precursor, and an inert gas, and subjecting the substrate to a second plasma formed from a second etch precursor in the inductively coupled plasma chamber at a second chamber pressure that is higher than the first chamber pressure, wherein the second etch precursor comprises a hydrogen-containing precursor and an inert gas.
Abstract:
Embodiments of the present disclosures provide methods and apparatus for manufacturing semiconductor devices such as transistors used for amplifying or switching electronic signals. Specifically, embodiments of the present disclosure generally relate to a semiconductor device having a film stack including an interlayer of semiconductor material and a buffer layer of semiconductor material underneath an active device layer. In various embodiments, the interlayer may include group III-V semiconductor materials formed between a first surface of a silicon-based substrate and the buffer layer. In certain embodiments the buffer layer may comprise group IV semiconductor materials. The interlayer may have a lattice constant designed to mitigate lattice mismatch between the group IV buffer layer and the silicon-based substrate. The buffer layer may provide improved integration of the active device layer to improve the performance of the resulting device.