Abstract:
Processing methods comprising selectively replacing a first pillar material with a second pillar material in a self-aligned process are described. The first pillar material may be grown orthogonally to the substrate surface and replaced with a second pillar material to leave a substantially similar shape and alignment as the first pillar material.
Abstract:
Methods for forming 3D-NAND devices comprising recessing a poly-Si layer to a depth below a spaced oxide layer. A liner is formed on the spaced oxide layer and not on the recessed poly-Si layer. A metal layer is deposited in the gaps on the liner to form wordlines.
Abstract:
Implementations of the present disclosure generally relate to the fabrication of integrated circuits. More particularly, the implementations described herein provide techniques for deposition of boron-carbon films on a substrate. In one implementation, a method of processing a substrate is provided. The method comprises flowing a hydrocarbon-containing gas mixture into a processing volume of a processing chamber having a substrate positioned therein, wherein the substrate is heated to a substrate temperature from about 400 degrees Celsius to about 700 degrees Celsius, flowing a boron-containing gas mixture into the processing volume and generating an RF plasma in the processing volume to deposit a boron-carbon film on the heated substrate, wherein the boron-carbon film has an elastic modulus of from about 200 to about 400 GPa and a stress from about −100 MPa to about 100 MPa.
Abstract:
Methods for modulating local stress and overlay error of one or more patterning films may include modulating a gas flow profile of gases introduced into a chamber body, flowing gases within the chamber body toward a substrate, rotating the substrate, and unifying a center-to-edge temperature profile of the substrate by controlling the substrate temperature with a dual zone heater. A chamber for depositing a film may include a chamber body comprising one or more processing regions. The chamber body may include a gas distribution assembly having a blocker plate for delivering gases into the one or more processing regions. The blocker plate may have a first region and a second region, and the first region and second region each may have a plurality of holes. The chamber body may have a dual zone heater.
Abstract:
Processing methods comprising depositing a film on a substrate surface and in a surface feature with chemical planarization to remove the film from the substrate surface, leaving the film in the feature. A pillar is grown from the film so that the pillar grows orthogonally to the substrate surface.
Abstract:
Methods for forming 3D-NAND devices comprising recessing a poly-Si layer to a depth below a spaced oxide layer. A liner is formed on the spaced oxide layer and not on the recessed poly-Si layer. A metal layer is deposited in the gaps on the liner to form wordlines.
Abstract:
Processing methods to create self-aligned contacts are described. A conformal liner can be deposited in a feature in a substrate surface leaving a gap between the walls of the liner. A tungsten film can be deposited in the gap of the liner and volumetrically expanded. The expanded film can be removed and replaced with a contact material to a make a contact. In some embodiments, a conformal tungsten film can be formed in the feature leaving a gap between the walls. A dielectric can be deposited in the gap and the conformal tungsten film can be volumetrically expanded to grow two pillars. The pillars can be removed and replaced with a contact material to make two contacts.
Abstract:
Processing methods comprising depositing a film on a substrate surface and in a surface feature with chemical planarization to remove the film from the substrate surface, leaving the film in the feature. A pillar is grown from the film so that the pillar grows orthogonally to the substrate surface.
Abstract:
Processing methods comprising selectively orthogonally growing a first material through a mask to provide an expanded first material are described. The mask can be removed leaving the expanded first material extending orthogonally from the surface of the first material. Further processing can create a self-aligned via.
Abstract:
Methods for modulating local stress and overlay error of one or more patterning films may include modulating a gas flow profile of gases introduced into a chamber body, flowing gases within the chamber body toward a substrate, rotating the substrate, and unifying a center-to-edge temperature profile of the substrate by controlling the substrate temperature with a dual zone heater. A chamber for depositing a film may include a chamber body comprising one or more processing regions. The chamber body may include a gas distribution assembly having a blocker plate for delivering gases into the one or more processing regions. The blocker plate may have a first region and a second region, and the first region and second region each may have a plurality of holes. The chamber body may have a dual zone heater.