Abstract:
LED packages are disclosed that are compact and efficiently emit light, and can comprise encapsulants with curved and planar surfaces. The packages can comprise a submount with a one or a plurality of LEDs, and in those with a plurality of LEDs each of the LEDs can emit the same or different wavelengths of light than the others. A blanket conversion material layer can be included on at least some of the LEDs and the submount. The encapsulant can be on the submount, over at least some of the LEDs, with each of the planar surfaces being vertical and aligned with one of the edges of the submount. The encapsulant can also have a upper curved surface with a relatively large radius of curvature, with the combination of curved and planar surfaces resulting in efficient emission of light with a relatively narrow emission profile.
Abstract:
A semiconductor light emitting apparatus a semiconductor light emitting device configured to emit light inside a hollow shell including wavelength conversion material dispersed therein or thereon. A semiconductor light emitting apparatus according to some embodiments is capable of generating in excess of 250 lumens per watt, and in some cases up to 270 lumens per watt.
Abstract:
An LED wafer includes LED dies on an LED substrate. The LED wafer and a carrier wafer are joined. The LED wafer that is joined to the carrier wafer is shaped. Wavelength conversion material is applied to the LED wafer that is shaped. Singulation is performed to provide LED dies that are joined to a carrier die. The singulated devices may be mounted in an LED fixture to provide high light output per unit area.
Abstract:
Solid state light fixtures include a plurality of blue-shifted-yellow/green light emitting diode (“LED”) packages and a plurality of blue-shifted-red LED packages, where the solid state light fixture emits light having a correlated color temperature of between 1800 K and 5500 K, a CRI value of between 80 and 99, a CRI R9 value of between 15 and 75, and a Qg value of between 90 and 110 when the blue-shifted-yellow/green LED packages and the blue-shifted-red LED packages are operating at steady-state operating temperatures of at least 80° C.
Abstract:
A small form factor LED lighting system provides for color-controlled dimming. Embodiments of the invention use one or more small-footprint LED(s) that can emit light of different correlated color temperatures (CCTs, colors or spectral outputs). The CCT of the fixture or bulb can change when dimmed by disproportionate adjustment of the driving power for each color. The small size and footprint of the LEDs enables use in decorative LED lamps, such as those designed to replace candelabra style incandescent bulbs. Various options can be used to tune the performance and lighting characteristics of a lamp according to embodiments of the invention, such as the use of differing LED device package optics, the use of reflective materials in and/or around LED device packages, and the use of a secondary optic to produce an omnidirectional light pattern.
Abstract:
Solid state light fixtures include a plurality of blue-shifted-yellow/green light emitting diode (“LED”) packages and a plurality of blue-shifted-red LED packages, where the solid state light fixture emits light having a correlated color temperature of between 1800 K and 5500 K, a CRI value of between 80 and 99, a CRI R9 value of between 15 and 75, and a Qg value of between 90 and 110 when the blue-shifted-yellow/green LED packages and the blue-shifted-red LED packages are operating at steady-state operating temperatures of at least 80° C.
Abstract:
Solid state light fixtures include a plurality of blue-shifted-yellow/green light emitting diode (“LED”) packages and a plurality of blue-shifted-red LED packages, where the solid state light fixture emits light having a correlated color temperature of between 1800 K and 5500 K, a CRI value of between 80 and 99, a CRI R9 value of between 15 and 75, and a Qg value of between 90 and 110 when the blue-shifted-yellow/green LED packages and the blue-shifted-red LED packages are operating at steady-state operating temperatures of at least 80° C.
Abstract:
Light emitting diode components are disclosed that utilize a thin, substantially flat or undomed encapsulant in order to achieve the desired emission profile to increase luminance and/or center beam candle power. Some embodiments of the devices include encapsulants, which result in an apparent source image, which does not exceed 2× the source size. Different embodiments of the present invention can comprise different configurations of emitters within the component, such as monolithic chips. The LEDs can be wire bonded to a surface. This surface can be black, reflective or include a reflective coating. In some embodiments, conversion materials can be applied conformal to the LED.
Abstract:
A solid state light emitting device includes a solid state light emitter and a lumiphoric material that are selected for use with one another to provide light emissions with improved (i.e., reduced) thermal droop A solid state emitter having a short peak emission wavelength (e.g., in a visible range at or below 440 nm) seemingly less than optimal at room temperature for use with a particular lumiphor can trigger more efficient stimulation of lumiphor emissions at high temperatures. Enhanced epitaxial structures also inhibit decrease of radiant flux by LEDs at elevated temperatures.