Abstract:
A semiconductor transistor has a structure including a semiconductor substrate, a source region, a drain region and a channel region in between the source region and the drain region. A metal gate, having a top conductive portion of tungsten is provided above the channel region. A first silicon nitride protective layer over the source region and the drain region and a second silicon nitride protective layer over the gate region are provided. The first silicon nitride protective layer and the second silicon nitride protective layer are configured to allow punch-through of the first silicon nitride protective layer while preventing etching through the second silicon nitride protective layer. Source and drain silicide is protected by avoiding fully etching a gate opening unless either the etching used would not harm the silicide, or the silicide and source and drain contacts are created prior to fully etching an opening to the gate for a gate contact.
Abstract:
A method for fabricating a CMOS integrated circuit structure and the CMOS integrated circuit structure. The method includes creating one or more n-type wells, creating one or more p-type wells, creating one or more pFET source-drains embedded in each of the one or more n-type wells, creating one or more nFET source-drains embedded in each of the one or more p-type wells, creating a pFET contact overlaying each of the one or more pFET source-drains, and creating an nFET contact overlaying each of the one or more nFET source-drains. A material of each of the one or more pFET source-drains includes silicon doped with a p-type material; a material of each of the one or more nFET source-drains includes silicon doped with an n-type material; a material of each pFET contact includes nickel silicide; and a material of each nFET contact comprises titanium silicide.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to a multi-level ferroelectric memory cell and methods of manufacture. The structure includes: a first metallization feature; a tapered ferroelectric capacitor comprising a first electrode, a second electrode and ferroelectric material between the first electrode and the second electrode, the first electrode contacting the first metallization feature; and a second metallization feature contacting the second electrode.
Abstract:
A device including a self-aligned buried contact between spacer liners and isolated from a pull down (PD)/pull-up (PU) shared gate and an n-channel field-effect transistor (NFET) pass gate (PG) gate and method of production thereof. Embodiments include first and second high-k/metal gate (HKMG) structures over a first portion of a substrate, and a third HKMG structure over a second portion of the substrate; an inter-layer dielectric (ILD) over a portion of the substrate and on sidewalls of the first, second and third HKMG structures; a spacer liner on sidewalls of the ILD between the second and third HKMG structures; and a buried contact layer between the spacer liner and in a portion of the substrate.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to middle of the line self-aligned direct pattern contacts and methods of manufacture. The structures described herein include: at least one gate structure with a metallization and source/drain regions; a source/drain contact in electrical connection with the source/drain regions, respectively; and a contact structure with a re-entrant profile in electrical connection with the source/drain contact and the metallization of the at least one gate structure, respectively.
Abstract:
The present disclosure generally relates to semiconductor structures and, more particularly, to middle of line structures and methods of manufacture. The structure includes: a plurality of gate structures comprising source and drain regions; contacts connecting to the source and drain regions; contacts connecting to the gate structures which are offset from the contacts connecting to the source and drain regions; and interconnect structures in electrical contact with the contacts of the gate structures and the contacts of the source and drain regions.
Abstract:
A vertical FinFET includes a semiconductor fin formed over a semiconductor substrate. A self-aligned first source/drain contact is electrically separated from a second source/drain contact by a spacer layer that is formed over an endwall of the fin. The spacer layer, which comprises a dielectric material, allows the self-aligned first source/drain contact to be located in close proximity to an endwall of the fin and the associated second source/drain contact without risk of an electrical short between the adjacent contacts.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to replacement metal gate structures and methods of manufacture. The structure includes at least one short channel device including a dielectric material, a workfunction metal, and a capping material, and a long channel device comprising the dielectric material, the workfunction metal and fluorine free gate conductor material.
Abstract:
A method for fabricating a semiconductor device comprises forming a first hardmask, a planarizing layer, and a second hardmask on a substrate. Removing portions of the second hardmask and forming alternating blocks of a first material and a second material over the second hardmask. The blocks of the second material are removed to expose portions of the planarizing layer. Exposed portions of the planarizing layer and the first hardmask are removed to expose portions of the first hardmask. Portions of the first hardmask and portions of the substrate are removed to form a first fin and a second fin. Portions of the substrate are removed to further increase the height of the first fin and substantially remove the second fin. A gate stack is formed over a channel region of the first fin.
Abstract:
A semiconductor structure includes a semiconductor substrate, a semiconductor fin on the semiconductor substrate, a transistor integrated with the semiconductor fin at a top portion thereof, the transistor including an active region including a source, a drain and a channel region therebetween. The semiconductor structure further includes a gate structure over the channel region, the gate structure including a gate electrode, an air-gap spacer pair on opposite sidewalls of the gate electrode, and a gate contact for the gate electrode. A method of fabricating such a semiconductor device is also provided.