Abstract:
A memory device includes a receiver to receive an input data signal and to create an output signal corresponding to the present received data signal and a voltage representative of a signal sampled earlier in time.
Abstract:
An integrated circuit device includes an output driver, a first register to store a value representative of a drive strength setting of the output driver, wherein the value is determined based on information stored in a supplemental memory device external to the integrated circuit memory device, and a transmitter circuit configurable to receive the value representative of a drive strength setting of the output driver. The output driver is configurable to output data synchronously with respect to an external clock signal.
Abstract:
Described are communication systems that convey differential and common-mode signals over the same differential channel. Noise-tolerant communication schemes use low-amplitude common-mode signals that are easily rejected by differential receivers, thus allowing for very high differential data rates. Some embodiments employ the common-mode signals to transmit backchannel signals for adjusting the characteristics of the differential transmitter. Backchannel control signals are effectively conveyed even if the forward channel transmitter is so maladjusted that the received differential data is unrecognizable. Systems in accordance with the above-described embodiments obtain these advantages without additional pins or communications channels, and are compatible with both AC-coupled and DC-coupled communications channels. Data coding schemes and corresponding data recovery circuits eliminate the need for complex, high-speed CDR circuits.
Abstract:
A circuit, apparatus and method for maximizing system margins by adjusting a duty-cycle of a clock signal in a receive circuit to whatever duty-cycle is optimal for the particular incoming serial data, rather than the typical 50% duty-cycle, is provided in embodiments of the present invention. A receive circuit, including duty-cycle-correction logic, is included in a double-data rate communication apparatus having a transmit circuit transmitting serial data having duty-cycle distortion. A receive circuit includes a first and second sampler to obtain data and edge values of an incoming serial data responsive to a data and edge clock, respectively. A duty-cycle-correction logic generates a duty-cycle-correction signal to a duty-cycle clock integrator that adjusts the edge clock signals while maintaining quadrature to the data clocks. In an embodiment of the present invention, a duty-cycle-correction logic includes an evaluator circuit to generate an up or down signal responsive to the data and/or edge values. In a further embodiment of the present invention, an evaluator circuit is coupled to a counter and a DAC to generate a duty-cycle-correction signal to the duty-cycle clock integrator. A digital filter or coding scheme is also used to reduce the likelihood of misinterpreting malevolent incoming serial data for duty-cycle distortion in an embodiment of the present invention.
Abstract:
A first device is described. The first device may include a linear transformation circuit to implement multiplication by a matrix D. The linear transformation circuit may have an input to receive a vector having N digital values and an output to output N first output signals, a sign-adjustment circuit to adjust signs of a subset including at least M of the N first output signals in accordance with a set of coefficients H, and a conversion (DAC) circuit coupled to the sign-adjustment circuit. Outputs from the DAC circuit may be summed to produce an output.
Abstract:
A controller device and method for operating same is disclosed. In one particular exemplary embodiment, the controller device may comprise output driver circuitry and input receiver circuitry. The output driver circuitry may output a value, a first operation code, a block size value, and second operation code. The first operation code may represent an instruction to a memory device to store the value in a register in the memory device. The block size value may indicate an amount of read data to be output by the memory device in response to the second operation code. The second operation code may represent an instruction to the memory device to perform a read operation. The input receiver circuitry may sample a first portion of the read data output by the memory device after a read delay following the outputting of the second operation code.
Abstract:
A transform circuit includes a first circuit and a second circuit. The first circuit and the second circuit implement first and second mappings that together generate a pre-defined transform of N digital data symbols. The first circuit maps a set of N digital data symbols from N parallel data streams to N analog data symbols by generating N sets of first weighted sums of the N digital data symbols. Each respective first weighted sum is defined by a respective set of pre-determined first weighting values in a first matrix. The second circuit maps the N analog data symbols to a sequence of N output signals over N time intervals. Each of the N output signals corresponds to a respective second weighted sum of the N analog data symbols. Each respective second weighted sum is defined by a respective set of pre-determined second weighting values in a second matrix.
Abstract:
A current controller for a multi-level current mode driver. The current controller includes a multi-level voltage reference and at least one source calibration signal. A comparator is coupled by a coupling network to the multi-level voltage reference and the at least one source calibration signal. A selected voltage is applied from the multi-level voltage reference and a selected source calibration signal is applied from the at least one source calibration signal to the comparator.
Abstract:
A signaling system having an equalizing transmitter and equalizing receiver. The equalizing transmitter transmits a signal to a receive circuit. A first sampling circuit within the equalizing receiver samples the signal to determine whether the signal exceeds a first threshold, and a second sampling circuit within the equalizing receiver samples the signal to determine whether the signal exceeds a second threshold. A drive strength of the equalizing transmitter and a drive strength of an equalizing signal driver within the equalizer are adjusted based, at least in part, on whether the first signal exceeds the first and second thresholds.
Abstract:
A memory device has interface circuitry and a memory core which make up the stages of a pipeline, each stage being a step in a universal sequence associated with the memory core. The memory device has a plurality of operation units such as precharge, sense, read and write, which handle the primitive operations of the memory core to which the operation units are coupled. The memory device further includes a plurality of transport units configured to obtain information from external connections specifying an operation for one of the operation units and to transfer data between the memory core and the external connections. The transport units operate concurrently with the operation units as added stages to the pipeline, thereby creating a memory device which operates at high throughput and with low service times under the memory reference stream of common applications.