Abstract:
A memory component includes a memory core comprising dynamic random access memory (DRAM) storage cells and a first circuit to receive external commands. The external commands include a read command that specifies transmitting data accessed from the memory core. The memory component also includes a second circuit to transmit data onto an external bus in response to a read command and pattern register circuitry operable during calibration to provide at least a first data pattern and a second data pattern. During the calibration, a selected one of the first data pattern and the second data pattern is transmitted by the second circuit onto the external bus in response to a read command received during the calibration. Further, at least one of the first and second data patterns is written to the pattern register circuitry in response to a write command received during the calibration.
Abstract:
An integrated circuit device includes a transmitter circuit including an output driver. The integrated circuit device includes a first register to store a value representative of a drive strength setting associated with the transmitter circuit such that the output driver outputs data in accordance with the drive strength setting. The integrated circuit device also includes a second register to store a value representative of an equalization setting associated with the transmitter circuit such that the output driver outputs data in accordance with the equalization setting. The integrated circuit device further includes a third register to store a value representative of a slew rate setting associated with the transmitter circuit such that the output driver outputs data in accordance with the slew rate setting.
Abstract:
Described are memory systems in which a memory controller issues commands and addresses to multiple memory modules that collectively support each read and write transactions. A common set of control signal lines from the controller communicates the same command and address signals to the modules. For write commands, the controller sends subsets of write data to each module over a respective subset of data lines. For read commands, each module responds with a subset of the requested data over the respective subset of data lines. The memory modules can be width configurable so that a single full-width module can connect to both subsets of data lines to convey full-width data, or two half-width modules can connect one each to the subsets of data lines.
Abstract:
An integrated circuit device includes a transmitter circuit including an output driver. The integrated circuit device includes a first register to store a value representative of a drive strength setting associated with the transmitter circuit such that the output driver outputs data in accordance with the drive strength setting. The integrated circuit device also includes a second register to store a value representative of an equalization setting associated with the transmitter circuit such that the output driver outputs data in accordance with the equalization setting. The integrated circuit device further includes a third register to store a value representative of a slew rate setting associated with the transmitter circuit such that the output driver outputs data in accordance with the slew rate setting.
Abstract:
A method and system that provides for execution of a first calibration sequence, such as upon initialization of a system, to establish an operation value, which utilizes an algorithm intended to be exhaustive, and executing a second calibration sequence from time to time, to measure drift in the parameter, and to update the operation value in response to the measured drift. The second calibration sequence utilizes less resources of the communication channel than does the first calibration sequence. In one embodiment, the first calibration sequence for measurement and convergence on the operation value utilizes long calibration patterns, such as codes that are greater than 30 bytes, or pseudorandom bit sequences having lengths of 2N−1 bits, where N is equal to or greater than 7, while the second calibration sequence utilizes short calibration patterns, such as fixed codes less than 16 bytes, and for example as short as 2 bytes long.
Abstract:
A memory module having memory components, a termination structure, an address/control signal path, a clock signal path, multiple data signal paths and multiple strobe signal paths. The strobe signal paths and data signal paths are coupled to respective memory components, and the address/control signal path and clock signal path are coupled in common to all the memory components. The address/control signal path extends along the memory components to the termination structure such that control signals propagating toward the termination structure arrive at address/control inputs of respective memory components at progressively later times corresponding to relative positions of the memory components.
Abstract:
Described are memory apparatus organized in physical banks and including configurable data control circuit to support multiple data-width configurations. Relatively narrow width configurations load fewer sense amplifiers, resulting in reduced power usage for relatively narrow memory configurations. Also described are memory controllers that convey configuration value to configurable memory apparatus and support point-to-point data buffers for multiple width configurations.
Abstract:
Systems and methods are provided for detecting and correcting address errors in a memory system. In the memory system, a memory device generates an error-detection code based on an address transmitted via an address bus and transmits the error-detection code to a memory controller. The memory controller transmits an error indication to the memory device in response to the error-detection code. The error indication causes the memory device to remove the received address and prevent a memory operation
Abstract:
A buffer integrated circuit (IC) chip is disclosed. The buffer IC chip includes host interface circuitry to receive a request from at least one host. The request includes at least one command to perform a memory compression operation on first uncompressed data that is stored in a first memory region. Compression circuitry, in response to the at least one command, compresses the first uncompressed data to first compressed data. The first compressed data is transferred to a second memory region.
Abstract:
Systems and methods are provided for detecting and correcting address errors in a memory system. In the memory system, a memory device generates an error-detection code based on an address transmitted via an address bus and transmits the error-detection code to a memory controller. The memory controller transmits an error indication to the memory device in response to the error-detection code. The error indication causes the memory device to remove the received address and prevent a memory operation.