Abstract:
A processor module socket accommodates processor modules of different sizes with adapters that align smaller-sized modules so that module pins align with desired contact points. The largest supported processor module engages with the socket in a conventional manner without the use of an adapter. Smaller processor modules engage within an adapter that in turn engages in the socket in a manner similar to the largest supported processor module. The contact points of the socket support different sized processor modules by keying logical functions based upon the type of processor module installed in the socket.
Abstract:
An improved system and method for assigning power and ground pins and single ended or differential signal pairs for a ball grid array semiconductor package. In certain embodiments, the system uses a hexagonal pattern where the grid may be represented by a multiplicity of nested hexagonal patterns.
Abstract:
An improved system and method for assigning power and ground pins and single ended or differential signal pairs for a ball grid array semiconductor package. In certain embodiments, the system uses a hexagonal pattern where the grid may be represented by a multiplicity of nested hexagonal patterns.
Abstract:
Power may be supplied to an electronic module according to various techniques. In one general implementation, for example, a system for supping power to an electronic module may include a printed circuit board, the electronic module, and a conductive foil. The board may include a number of contact locations on a first side, with at least one of the contact locations electrically coupled to a via to a second side of the board. The electronic module may be electrically coupled to the contact locations on the first side of the board and receive electrical power through the at least one contact location electrically coupled to a via. The foil may be adapted to convey electrical power for the electronic module and electrically coupled on the second side of circuit board to at least the via electrically coupled to a contact location that receives electrical power for the electronic module.
Abstract:
A test card system for use in product development includes a device under test (DUT). The DUT comprises: a mount plane; a power input port coupled to the mount plane; a JTAG input port coupled to the mount plane; a clock signal distribution network coupled to the JTAG input port; a plurality of latches coupled to the clock signal distribution network and the power input port; and an output port coupled to the plurality of latches. A test card (TC) couples to the DUT, comprising: a JTAG interface coupled to the DUT JTAG input port and configured to provide test data to the DUT; a clock module coupled to the DUT clock signal distribution network and configured to generate a clock signal; and an analysis module coupled to the DUT output port and configured to receive data from the DUT.
Abstract:
A circuit for detecting noise events in a system with time variable operating points is provided. A first voltage, which is averaged over time, is compared to a second voltage. A signal is generated to instruct circuits within a processor to initiate actions to keep a voltage from drooping further.
Abstract:
Monitoring temperature excursions an assembly experiences over a life of the assembly is provided. A determination is made as to whether the assembly has been in service beyond a predetermined end of life objective. Responsive to the assembly failing to be in service beyond the predetermined end of life objective, a new temperature value associated with the assembly is read. A modifier value for a figure of merit (FOM) value is computed and added to a cumulative figure of merit value. The cumulative figure of merit value is compared to a cumulative stress figure of merit budget. Responsive to the cumulative figure of merit value exceeding the cumulative stress figure of merit budget, an identified stress management solution is implemented.
Abstract:
A design method and system for minimizing blind via current loops provides for improvement of electrical interconnect structure design without requiring extensive electromagnetic analysis. Other vias in the vicinity of a blind via carrying a critical signal are checked for suitability to conduct return current corresponding to the critical signal that is disrupted by the transition from a layer between two metal planes to another layer. The distance to the return current via(s) is checked and the design is adjusted to reduce the distance if the distance is greater than a specified threshold. If the blind via transition is to an external layer, suitable vias connect the reference plane at the internal end of the blind via to an external terminal. If the transition is between internal layers, suitable vias are vias that connect the two reference planes surrounding the reference plane traversed by the blind via.
Abstract:
A system for mitigating power supply and power distribution system noise response by throttling execution units based upon voltage sensing in a circuit is provided. A sensing unit senses the voltage of a circuit. The sensing unit determines if the execution of another execution unit will cause the circuit voltage to drop below a threshold level. In response to a determination that the execution of another execution unit will cause the circuit voltage to drop below the threshold level, the execution unit is throttled.
Abstract:
An auto routing method and system provides optimized circuit routing while maintaining proper reference return paths for critical signals. Critical signal paths are auto-routed simultaneously with corresponding reference return paths, and the reference return paths can be merged into reference planes if they are adjacent to regions connected to the same reference net. The reference return paths may be in a plane adjacent to the signal path plane in the same channel, or the reference returns may be routed in adjacent channels in the same plane as the signal path. A check may be performed on endpoints of each critical signal path to determine whether a reference return via is present within a proximity tolerance of the signal path endpoints, and a reference return via placed if not.