摘要:
A high transconductance HFET (21) utilizes nonalloy semiconductor materials (26) to form a strained channel layer (26) that has a deep quantum well (38). The materials utilized for layers adjacent to the channel layer (26) apply strain to the channel layer (26) and create an excess of high mobility carriers in the channel layer (26). The materials also form a deep quantum well (38) that confines the high mobility carriers to the channel (26). The high mobility carriers and the high confinement provide an HFET (21) that has high transconductance, high frequency response, and sharp pinch-off characteristics.
摘要:
A stable FET including a substrate structure with a doped layer formed as a portion of the substrate structure and defining an electrically conductive shielding region adjacent a surface of the substrate structure. A channel region is positioned on the shielding region and includes a plurality of epitaxial layers grown on the surface of the substrate structure in overlying relationship to the doped layer. A drain and a source are positioned on the channel region in spaced relationship from each other with a gate positioned in overlying relationship on the channel region between the drain and source. An externally accessible electrical contact is connected to the shielding region and to the source region to provide a path for the removal of internally generated charges, such as holes.
摘要:
A multi-state, multi-layer magnetic memory cell including a first conductor, a first magnetic layer contacting the first conductor, an insulating layer on the first magnetic layer, a second magnetic layer on the insulating layer, a second conductor contacting the second magnetic layer, and a word line adjacent, or in contact with, the cell so as to provide a magnetic field to partially switch magnetic vectors along the length of the first magnetic layer. Information is stored by passing one current through the word line and a second current through the first and second conductors sufficient to switch vectors in the first and second magnetic layers. Sensing is accomplished by passing a read current through a word line sufficient to switch one layer (and not the other) and a sense current through the cell, by way of the first and second conductors, and measuring a resistance across the cell.
摘要:
A magnetic random access memory (MRAM) cell structure (10) with a portion of giant magnetoresistive (GMR) material (11), around which single or multiple word line (12) is wound, is provided. Magnetic field generated by word current (13, 14) superimposed in portion of GMR material (11) so that a total strength of magnetic field increases proportionally. The same word current is passed through the portion of GMR material (11) multiple times, thus producing equivalent word field by many times as large word current in a conventional MRAM cell.
摘要:
An SRAM including first and second RITDs each formed with a heterostructure including a GaSb active layer sandwiched between AlSb barrier layers, which are sandwiched between InAs layers with each RITD having a contact connected to a first of the InAs layers. A TD including an AlSb layer sandwiched between InAS layers. A second InAs layer for each of the RITDs being integrally formed with a first InAs layer of the TD and a read/write terminal connected to a second InAs layer of the TD.
摘要:
A bipolar heterojunction diode has an anode (11, 41), a blocking layer (12, 42) and a junction region (13, 14, 43). a heterojunction (32, 58) in the junction region (13, 14, 43) is utilized to create a misalignment between the band gap of the anode (11, 41) and a band gap of the heterojunction (13, 14, 43). The misalignment prevents a depletion region from extending into the heterojunction (13, 14, 43).
摘要:
A quantum multifunction transistor including a plurality of conduction layers of semiconductor material with a tunnel barrier layer sandwiched therebetween. The conduction layers each being very thin to form discrete energy levels, and the material being chosen so that discrete energy levels therein are not aligned across the tunnel barrier layer in an equilibrium state. A gate coupled to a portion of one of the conduction layers for aligning, in response to a voltage applied thereto, discrete energy levels in the conduction layers across the tunnel barrier layer, whereby majority carrier current flows through the transistor. Application of a higher voltage to the gate results in minority carrier current flow through the transistor.
摘要:
A low power heterojunction field effect transistor (10, 30, 50, 60) capable of operating at low drain currents while having a low intermodulation distortion. A channel restriction region (9, 38, 51) is formed between the gate electrodes (24, 41, 69) and the drain electrodes (25, 46, 65). The channel restriction region (9, 38, 51) depletes the channel layer (13, 33) thereby constricting a channel and lowering a drain saturation current. The channel restriction region (9, 38, 51) may be used to set a desired drain saturation current such that a second derivative of the transconductance with respect to the gate-source voltage is approximately zero and a first derivative of the transconductance with respect to the gate-source voltage is, approximately, a relative maximum at the desired operating point.
摘要:
A thin layer, typically a monolayer, of a small band gap material (37) is inserted into the active layer (14) of a quantum well semiconductor device (36, 51). The band gap of the thin layer (37) is smaller than the band gap of the material in the active layer (14), thereby shifting carrier concentrations in the quantum well (26d, 26e, 26h, 26n) of the active layer (14) toward the thin layer (37). This shift increases alignment between the electron wave function (42, 54) and the hole wave function (44, 57) in the quantum well (26d, 26e, 26h, 26n) which increases the probability of stimulated photon emissions thereby reducing the threshold current and threshold voltage of the quantum well semiconductor device (36, 51).
摘要:
A FET having a high trap concentration interface layer and method of fabrication includes a semi-insulating gallium arsenide substrate having a high trap concentration interface layer formed therein. An non-intentionally doped buffer layer, also comprised of gallium arsenide, is then formed on the interface layer and is followed by the formation of a doped aluminum gallium arsenide layer thereon. A source, a gate and a drain are then formed on the FET layers. The FET and method disclosed herein are especially applicable for low current (5-1000 microamp) operation of microwave low-noise FETs.