Abstract:
Disclosed herein are sacrificial coating compositions comprising at least one polymer chosen from polyvinyl alcohol and polyvinyl alcohol copolymers, a wax emulsion comprising at least one wax, at least one surfactant, at least one hygroscopic agent, and water. In certain embodiments, the at least one wax in the wax emulsion has a melting point approaching but just below the ink transfer temperature, such as, for example, a melting point ranging from about 50° C. to about 150° C. Also disclosed herein is a blanket material suitable for transfix printing comprising a sacrificial coating composition, as well as an indirect printing process comprising a step of applying a sacrificial coating composition to a blanket material.
Abstract:
A method includes forming a film over a printed image on a substrate, the film includes a print overcoat composition having a binder that includes an aqueous vinylacetate-ethylene copolymer emulsion, (1) a particulate additive as a dispersion or emulsion, (2) a co-binder, or (3) both, and a surfactant, the film provides wear and scratch resistance to the printed image.
Abstract:
Provided herein is a composition for eutectic metal alloy nanoparticles having an average particle size ranging from about 0.5 nanometers to less than about 5000 nanometers and at least one organoamine stabilizer. Also provided herein is a process for preparing eutectic metal alloy nanoparticles comprising mixing at least one organic polar solvent, at least one organoamine stabilizer, and a eutectic metal alloy to create a mixture; sonicating the mixture at a temperature above the melting point of the eutectic metal alloy; and collecting a composition comprising a plurality of eutectic metal alloy nanoparticles having an average particle size ranging from about 0.5 nanometers to less than about 5000 nanometers. Further disclosed herein are hybrid conductive ink compositions comprising a component comprising a plurality of metal nanoparticles and a component comprising a plurality of eutectic metal alloy nanoparticles.
Abstract:
Conductive adhesive compositions, jettable ink adhesive compositions, printed electronics incorporating the conductive adhesive compositions, and methods for preparing the same are provided. The conductive adhesive composition may include a eutectic metal alloy, an amine, and a solvent, and the eutectic metal alloy may include gallium, indium, and optionally tin.
Abstract:
A process for preparing a device and a device including a substrate; an interlayer disposed on the substrate, wherein the interlayer comprises a cured film formed from an interlayer composition, wherein the interlayer composition comprises: an epoxy compound; a polyvinyl phenol; a melamine resin; a solvent; an optional surfactant; and an optional catalyst; a source electrode and a drain electrode disposed on a surface of the interlayer; a semiconductor layer disposed on the interlayer, wherein the semiconductor layer is disposed into a gap between the source and drain electrode; a back channel interface comprising an interface between the semiconductor layer and the interlayer, wherein the interlayer serves as a back channel dielectric layer for the device; a dielectric layer disposed on the semiconductor layer; a gate electrode disposed on the dielectric layer. Also an interlayer composition and an organic thin film transistor comprising the interlayer composition.
Abstract:
UV-curable interlayer compositions are provided. An interlayer composition may contain a polyallyl isocyanurate compound, an ester of β-mercaptopropionic acid, a monofunctional (meth)acrylate monomer having one or more cyclic groups, and a photoinitiator. Processes of using the interlayer compositions to form multilayer structures and the multilayer structures are also provided.
Abstract:
Disclosed herein are sacrificial coating compositions comprising at least one hydrophilic polymer; at least one hygroscopic agent; at least one surfactant; at least one non-reactive silicone release agent; and water. In certain embodiments, the at least one non-reactive silicone release agent is chosen from polyether modified polysiloxane and nonreactive silicone glycol copolymers. In certain embodiments, the at least one non-reactive silicone release agent may be present in an amount ranging from about 0.001% to about 2%, based on the total weight of the composition, such as from about 0.03% to about 0.06%. Also disclosed herein is a blanket material suitable for transfix printing comprising a sacrificial coating composition, as well as an indirect printing process comprising a step of applying a sacrificial coating composition to a blanket material.
Abstract:
A composition formed from ingredients comprising: an epoxy; a polyvinyl phenol; a cross-linking agent; an epoxy silane; and a solvent is disclosed. A printable medium and other devices made from the composition are also disclosed.
Abstract:
A sacrificial coating composition for an image transfer member in an aqueous ink imaging system. The sacrificial coating composition includes a latex having polymer particles dispersed in a continuous liquid phase; at least one hygroscopic material; at least one surfactant; and water.
Abstract:
Disclosed herein are sacrificial coating compositions comprising at least one polyvinyl alcohol; at least one waxy starch; at least one hygroscopic agent; at least one surfactant; and water, wherein the ratio by weight of the at least one waxy starch to the at least one polyvinyl alcohol is at least two to one. In certain embodiments, the at least one polyvinyl alcohol has a degree of hydrolysis of at least about 95%, such as at least about 98%, or at least about 99.3%. In certain embodiments, the viscosity of the at least one polyvinyl alcohol in a deionized water solution at 20° C. ranges from about 30 cps to about 80 cps, wherein the solution contains 4% by weight polyvinyl alcohol relative to the total weight of polyvinyl alcohol and deionized water in the solution. Also disclosed herein are methods of making a sacrificial coating composition.